File size: 13,524 Bytes
a059ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import asyncio
import base64
import os
import time
from io import BytesIO
from google.genai import types
from google.genai.types import (
    LiveConnectConfig,
    SpeechConfig,
    VoiceConfig,
    PrebuiltVoiceConfig,
    Content,
    Part,
)
import gradio as gr
import numpy as np
import websockets
from dotenv import load_dotenv
from fastrtc import (
    AsyncAudioVideoStreamHandler,
    Stream,
    WebRTC,
    get_cloudflare_turn_credentials_async,
    wait_for_item,
)
from google import genai
from gradio.utils import get_space
from PIL import Image

# ------------------------------------------
import asyncio
import base64
import json
import os
import pathlib
from typing import AsyncGenerator, Literal

import gradio as gr
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from fastrtc import (
    AsyncStreamHandler,
    Stream,
    get_cloudflare_turn_credentials_async,
    wait_for_item,
)
from google import genai
from google.genai.types import (
    LiveConnectConfig,
    PrebuiltVoiceConfig,
    SpeechConfig,
    VoiceConfig,
)
from gradio.utils import get_space
from pydantic import BaseModel
# ------------------------------------------------
from dotenv import load_dotenv
load_dotenv()
import os
import io
import asyncio
from pydub import AudioSegment

# Gemini: google-genai
from google import genai
# ---------------------------------------------------
# VAD imports from reference code
import collections
import webrtcvad
import time

# helper functions
GEMINI_API_KEY="AIzaSyCUCivstFpC9pq_jMHMYdlPrmh9Bx97dFo"

TAVILY_API_KEY="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"

OPENAI_API_KEY="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"

QDRANT_API_KEY="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIiwiZXhwIjoxNzUxMDUxNzg4fQ.I9J-K7OM0BtcNKgj2d4uVM8QYAHYfFCVAyP4rlZkK2E"

QDRANT_URL="https://6a3aade6-e8ad-4a6c-a579-21f5af90b7e8.us-east4-0.gcp.cloud.qdrant.io"

OPENAI_API_KEY="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"

WEAVIATE_URL="yorcqe2sqswhcaivxvt9a.c0.us-west3.gcp.weaviate.cloud"

WEAVIATE_API_KEY="d2d0VGdZQTBmdTFlOWdDZl9tT2h3WDVWd1NpT1dQWHdGK0xjR1hYeWxicUxHVnFRazRUSjY2VlRUVlkwPV92MjAw"

DEEPINFRA_API_KEY="285LUJulGIprqT6hcPhiXtcrphU04FG4"

DEEPINFRA_BASE_URL="https://api.deepinfra.com/v1/openai"
def encode_audio(data: np.ndarray) -> dict:
    """Encode Audio data to send to the server"""
    return {
        "mime_type": "audio/pcm",
        "data": base64.b64encode(data.tobytes()).decode("UTF-8"),
    }
def encode_audio2(data: np.ndarray) -> bytes:
    """Encode Audio data to send to the server"""
    return data.tobytes()

import soundfile as sf

def numpy_array_to_wav_bytes(audio_array, sample_rate=16000):
    buffer = io.BytesIO()
    sf.write(buffer, audio_array, sample_rate, format='WAV')
    return buffer.getvalue()


def numpy_array_to_wav_bytes(audio_array, sample_rate=16000):
    """

    Convert a NumPy audio array to WAV bytes.



    Args:

        audio_array (np.ndarray): Audio signal (1D or 2D).

        sample_rate (int): Sample rate in Hz.



    Returns:

        bytes: WAV-formatted audio data.

    """
    buffer = io.BytesIO()
    sf.write(buffer, audio_array, sample_rate, format='WAV')
    buffer.seek(0)
    return buffer.read()
# webrtc handler class
class GeminiHandler(AsyncStreamHandler):
    """Handler for the Gemini API with chained latency calculation."""

    def __init__(

        self,

        expected_layout: Literal["mono"] = "mono",

        output_sample_rate: int = 24000,prompt_dict: dict = {"prompt":"PHQ-9"},

    ) -> None:
        super().__init__(
            expected_layout,
            output_sample_rate,
            input_sample_rate=16000,
        )
        self.input_queue: asyncio.Queue = asyncio.Queue()
        self.output_queue: asyncio.Queue = asyncio.Queue()
        self.quit: asyncio.Event = asyncio.Event()
        self.prompt_dict = prompt_dict
        # self.model = "gemini-2.5-flash-preview-tts"
        self.model = "gemini-2.0-flash-live-001"
        self.t2t_model = "gemini-2.0-flash"
        self.s2t_model = "gemini-2.0-flash"

        # --- VAD Initialization ---
        self.vad = webrtcvad.Vad(3)
        self.VAD_RATE = 16000
        self.VAD_FRAME_MS = 20
        self.VAD_FRAME_SAMPLES = int(self.VAD_RATE * (self.VAD_FRAME_MS / 1000.0))
        self.VAD_FRAME_BYTES = self.VAD_FRAME_SAMPLES * 2
        padding_ms = 300
        self.vad_padding_frames = padding_ms // self.VAD_FRAME_MS
        self.vad_ring_buffer = collections.deque(maxlen=self.vad_padding_frames)
        self.vad_ratio = 0.9
        self.vad_triggered = False
        self.wav_data = bytearray()
        self.internal_buffer = bytearray()
        
        self.end_of_speech_time: float | None = None
        self.first_latency_calculated: bool = False

    def copy(self) -> "GeminiHandler":
        return GeminiHandler(
            expected_layout="mono",
            output_sample_rate=self.output_sample_rate,
            prompt_dict=self.prompt_dict,
        )

    def t2t(self, text: str) -> str:
        print(f"Sending text to Gemini: {text}")
        response = self.chat.send_message(text)
        print(f"Received response from Gemini: {response.text}")
        return response.text

    def s2t(self, audio) -> str:
        response = self.s2t_client.models.generate_content(
            model=self.s2t_model,
            contents=[
                types.Part.from_bytes(data=audio, mime_type='audio/wav'),
                'Generate a transcript of the speech.'
            ]
        )
        return response.text

    async def start_up(self):
        # Flag for if we are using text-to-text in the middle of the chain or not.
        self.t2t_bool = False
        self.sys_prompt = None
        
        self.t2t_client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
        self.s2t_client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))#, http_options={"api_version": "v1alpha"})
        if self.sys_prompt is not None: 
            chat_config = types.GenerateContentConfig(system_instruction=self.sys_prompt)
        else:
            chat_config = types.GenerateContentConfig(system_instruction="You are a helpful assistant.")
        self.chat = self.t2t_client.chats.create(model=self.t2t_model, config=chat_config)
        self.t2s_client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))

        voice_name = "Puck"
        if self.t2t_bool:
            sys_instruction = f""" You are Wisal, an AI assistant developed by Compumacy AI , and a knowledgeable Autism .

                                Your sole purpose is to provide helpful, respectful, and easy-to-understand answers about Autism Spectrum Disorder (ASD).

                                Always be clear, non-judgmental, and supportive."""
        else:
            sys_instruction = self.sys_prompt
            
        if sys_instruction is not None:
            config = LiveConnectConfig(
            response_modalities=["AUDIO"],
            speech_config=SpeechConfig(
                voice_config=VoiceConfig(
                    prebuilt_voice_config=PrebuiltVoiceConfig(voice_name=voice_name)
                )
            ),
            system_instruction=Content(parts=[Part.from_text(text=sys_instruction)])
            )
        else:
            config = LiveConnectConfig(
                response_modalities=["AUDIO"],
                speech_config=SpeechConfig(
                    voice_config=VoiceConfig(
                        prebuilt_voice_config=PrebuiltVoiceConfig(voice_name=voice_name)
                    )
                ),
            )
        
        async with self.t2s_client.aio.live.connect(model=self.model, config=config) as session:
            async for text_from_user in self.stream():
                print("--------------------------------------------")
                print(f"Received text from user and reading aloud: {text_from_user}")
                print("--------------------------------------------")
                if text_from_user and text_from_user.strip():
                    if self.t2t_bool:
                        prompt = f"""

                              You are Wisal, an AI assistant developed by Compumacy AI , and a knowledgeable Autism .

                                Your sole purpose is to provide helpful, respectful, and easy-to-understand answers about Autism Spectrum Disorder (ASD).

                                Always be clear, non-judgmental, and supportive.



                        {text_from_user}

                        """
                    else:
                        prompt = text_from_user
                    await session.send_client_content(
                        turns=types.Content(
                        role='user', parts=[types.Part(text=prompt)]))
                    async for resp_chunk in session.receive():
                        if resp_chunk.data:
                            array = np.frombuffer(resp_chunk.data, dtype=np.int16)
                            self.output_queue.put_nowait((self.output_sample_rate, array))
                    

    async def stream(self) -> AsyncGenerator[bytes, None]:
        while not self.quit.is_set():
            try:
                # Get the text message to be converted to speech
                text_to_speak = await self.input_queue.get()
                yield text_to_speak
            except (asyncio.TimeoutError, TimeoutError):
                pass
    
    async def receive(self, frame: tuple[int, np.ndarray]) -> None:
        sr, array = frame
        audio_bytes = array.tobytes()
        self.internal_buffer.extend(audio_bytes)

        while len(self.internal_buffer) >= self.VAD_FRAME_BYTES:
            vad_frame = self.internal_buffer[:self.VAD_FRAME_BYTES]
            self.internal_buffer = self.internal_buffer[self.VAD_FRAME_BYTES:]
            is_speech = self.vad.is_speech(vad_frame, self.VAD_RATE)

            if not self.vad_triggered:
                self.vad_ring_buffer.append((vad_frame, is_speech))
                num_voiced = len([f for f, speech in self.vad_ring_buffer if speech])
                if num_voiced > self.vad_ratio * self.vad_ring_buffer.maxlen:
                    print("Speech detected, starting to record...")
                    self.vad_triggered = True
                    for f, s in self.vad_ring_buffer:
                        self.wav_data.extend(f)
                    self.vad_ring_buffer.clear()
            else:
                self.wav_data.extend(vad_frame)
                self.vad_ring_buffer.append((vad_frame, is_speech))
                num_unvoiced = len([f for f, speech in self.vad_ring_buffer if not speech])
                if num_unvoiced > self.vad_ratio * self.vad_ring_buffer.maxlen:
                    print("End of speech detected.")
                    

                    self.end_of_speech_time = time.monotonic()
                    
                    self.vad_triggered = False
                    full_utterance_np = np.frombuffer(self.wav_data, dtype=np.int16)
                    audio_input_wav = numpy_array_to_wav_bytes(full_utterance_np, sr)

                    text_input = self.s2t(audio_input_wav)
                    if text_input and text_input.strip():
                        if self.t2t_bool:
                            text_message = self.t2t(text_input)           
                        else:
                            text_message = text_input
                        self.input_queue.put_nowait(text_message)
                    else:
                        print("STT returned empty transcript, skipping.")

                    self.vad_ring_buffer.clear()
                    self.wav_data = bytearray()

    async def emit(self) -> tuple[int, np.ndarray] | None:

        return await wait_for_item(self.output_queue)

    def shutdown(self) -> None:

        self.quit.set()
        

with gr.Blocks() as demo:
    gr.Markdown("# Gemini Chained Speech-to-Speech Demo")
    
    # for audio modality
    # with gr.Row(visible=(modality_selector.value == "audio")) as row2:
    with gr.Row() as row2:
        with gr.Column():  # Optional, can be removed if not needed
            webrtc2 = WebRTC(
                label="Audio Chat",
                modality="audio",
                mode="send-receive",
                elem_id="audio-source",
                rtc_configuration=get_cloudflare_turn_credentials_async,
                icon="https://www.gstatic.com/lamda/images/gemini_favicon_f069958c85030456e93de685481c559f160ea06b.png",
                pulse_color="rgb(255, 255, 255)",
                icon_button_color="rgb(255, 255, 255)",
            )
            # Corrected inputs and outputs for webrtc2.stream to use webrtc2
            webrtc2.stream(
                GeminiHandler(),
                inputs=[webrtc2], # Was webrtc
                outputs=[webrtc2],# Was webrtc
                time_limit=180 if get_space() else None,
                concurrency_limit=2 if get_space() else None,
            )

if __name__ == "__main__":
    demo.launch(server_port=7860)