Spaces:
Paused
Paused
Added logging with the logging package
Browse files
app.py
CHANGED
@@ -15,6 +15,9 @@ from sentence_transformers import SentenceTransformer
|
|
15 |
from peft import PeftModel
|
16 |
from bs4 import BeautifulSoup
|
17 |
import requests
|
|
|
|
|
|
|
18 |
|
19 |
headers = {
|
20 |
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit 537.36 (KHTML, like Gecko) Chrome",
|
@@ -24,7 +27,7 @@ headers = {
|
|
24 |
|
25 |
|
26 |
def google_search(text):
|
27 |
-
|
28 |
try:
|
29 |
site = requests.get(f"https://www.google.com/search?hl=en&q={text}", headers=headers)
|
30 |
main = (
|
@@ -40,10 +43,10 @@ def google_search(text):
|
|
40 |
|
41 |
ans = " \n".join(res)
|
42 |
except Exception as ex:
|
43 |
-
|
44 |
ans = ""
|
45 |
|
46 |
-
|
47 |
|
48 |
return ans
|
49 |
|
@@ -112,13 +115,13 @@ def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
|
112 |
return []
|
113 |
|
114 |
if verbose:
|
115 |
-
|
116 |
|
117 |
final_results = []
|
118 |
|
119 |
if re_rank:
|
120 |
if verbose:
|
121 |
-
|
122 |
|
123 |
sentence_combinations = [
|
124 |
[query, result_from_pinecone["metadata"]["text"]] for result_from_pinecone in results_from_pinecone
|
@@ -135,17 +138,17 @@ def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
|
135 |
result_from_pinecone = results_from_pinecone[idx]
|
136 |
final_results.append(result_from_pinecone)
|
137 |
if verbose:
|
138 |
-
|
139 |
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
|
140 |
)
|
141 |
return final_results
|
142 |
|
143 |
if verbose:
|
144 |
-
|
145 |
for result_from_pinecone in results_from_pinecone:
|
146 |
final_results.append(result_from_pinecone)
|
147 |
if verbose:
|
148 |
-
|
149 |
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
|
150 |
)
|
151 |
|
@@ -268,13 +271,13 @@ def text_to_text_generation(verbose, prompt):
|
|
268 |
match response_num:
|
269 |
case 0:
|
270 |
prompt = f"[INST] {prompt}\n Lets think step by step. [/INST] {start_template}"
|
271 |
-
|
272 |
-
|
273 |
case 1:
|
274 |
if retriever == "semantic_search":
|
275 |
question = prompt
|
276 |
-
|
277 |
-
|
278 |
(
|
279 |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_BOOK] [INST] Answer the following question: {question} [/INST]\nAnswer: \n")
|
280 |
|
@@ -295,8 +298,8 @@ def text_to_text_generation(verbose, prompt):
|
|
295 |
question = prompt
|
296 |
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
|
297 |
|
298 |
-
|
299 |
-
|
300 |
(
|
301 |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_GOOGLE] [INST] Answer the following question: {question} [/INST]\nAnswer:\n\n"
|
302 |
)
|
@@ -312,13 +315,13 @@ def text_to_text_generation(verbose, prompt):
|
|
312 |
)
|
313 |
else:
|
314 |
prompt = f"[INST] Answer the following question: {prompt} [/INST]\nAnswer: "
|
315 |
-
|
316 |
-
|
317 |
|
318 |
case _:
|
319 |
prompt = f"[INST] {prompt} [/INST]"
|
320 |
-
|
321 |
-
|
322 |
|
323 |
return prompt, md
|
324 |
|
@@ -350,8 +353,8 @@ def text_to_text_generation(verbose, prompt):
|
|
350 |
|
351 |
modes = ["Kubectl command", "Kubernetes related", "Other"]
|
352 |
|
353 |
-
|
354 |
-
|
355 |
|
356 |
modes[response_num] = f"**{modes[response_num]}**"
|
357 |
modes = " / ".join(modes)
|
@@ -419,16 +422,16 @@ def text_to_text_generation(verbose, prompt):
|
|
419 |
res_prompt, res_semantic_search_prompt, res_google_search_prompt
|
420 |
)
|
421 |
|
422 |
-
|
423 |
-
|
424 |
|
425 |
|
426 |
res_prompt, res_normal = cleanup(*gen_normal)
|
427 |
res_semantic_search_prompt, res_semantic_search = cleanup(*gen_semantic_search)
|
428 |
res_google_search_prompt, res_google_search = cleanup(*gen_google_search)
|
429 |
|
430 |
-
|
431 |
-
|
432 |
|
433 |
if verbose:
|
434 |
return (
|
|
|
15 |
from peft import PeftModel
|
16 |
from bs4 import BeautifulSoup
|
17 |
import requests
|
18 |
+
import logging
|
19 |
+
|
20 |
+
logging.basicConfig(format='[%(asctime)s] %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO)
|
21 |
|
22 |
headers = {
|
23 |
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit 537.36 (KHTML, like Gecko) Chrome",
|
|
|
27 |
|
28 |
|
29 |
def google_search(text):
|
30 |
+
logging.info(f"Google search on: {text}")
|
31 |
try:
|
32 |
site = requests.get(f"https://www.google.com/search?hl=en&q={text}", headers=headers)
|
33 |
main = (
|
|
|
43 |
|
44 |
ans = " \n".join(res)
|
45 |
except Exception as ex:
|
46 |
+
logging.error(f"Error: {ex}")
|
47 |
ans = ""
|
48 |
|
49 |
+
logging.info(f"The result of the google search is: {ans}")
|
50 |
|
51 |
return ans
|
52 |
|
|
|
115 |
return []
|
116 |
|
117 |
if verbose:
|
118 |
+
logging.info("Query:", query)
|
119 |
|
120 |
final_results = []
|
121 |
|
122 |
if re_rank:
|
123 |
if verbose:
|
124 |
+
logging.info("Document ID (Hash)\t\tRetrieval Score\tCE Score\tText")
|
125 |
|
126 |
sentence_combinations = [
|
127 |
[query, result_from_pinecone["metadata"]["text"]] for result_from_pinecone in results_from_pinecone
|
|
|
138 |
result_from_pinecone = results_from_pinecone[idx]
|
139 |
final_results.append(result_from_pinecone)
|
140 |
if verbose:
|
141 |
+
logging.info(
|
142 |
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
|
143 |
)
|
144 |
return final_results
|
145 |
|
146 |
if verbose:
|
147 |
+
logging.info("Document ID (Hash)\t\tRetrieval Score\tText")
|
148 |
for result_from_pinecone in results_from_pinecone:
|
149 |
final_results.append(result_from_pinecone)
|
150 |
if verbose:
|
151 |
+
logging.info(
|
152 |
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
|
153 |
)
|
154 |
|
|
|
271 |
match response_num:
|
272 |
case 0:
|
273 |
prompt = f"[INST] {prompt}\n Lets think step by step. [/INST] {start_template}"
|
274 |
+
logging.info('Kubectl command prompt:')
|
275 |
+
logging.info(prompt)
|
276 |
case 1:
|
277 |
if retriever == "semantic_search":
|
278 |
question = prompt
|
279 |
+
logging.info('Semantic search prompt:')
|
280 |
+
logging.info(
|
281 |
(
|
282 |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_BOOK] [INST] Answer the following question: {question} [/INST]\nAnswer: \n")
|
283 |
|
|
|
298 |
question = prompt
|
299 |
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
|
300 |
|
301 |
+
logging.info('Google search prompt:')
|
302 |
+
logging.info(
|
303 |
(
|
304 |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_GOOGLE] [INST] Answer the following question: {question} [/INST]\nAnswer:\n\n"
|
305 |
)
|
|
|
315 |
)
|
316 |
else:
|
317 |
prompt = f"[INST] Answer the following question: {prompt} [/INST]\nAnswer: "
|
318 |
+
logging.info('No retriever question prompt:')
|
319 |
+
logging.info(prompt)
|
320 |
|
321 |
case _:
|
322 |
prompt = f"[INST] {prompt} [/INST]"
|
323 |
+
logging.info('Other question prompt:')
|
324 |
+
logging.info(prompt)
|
325 |
|
326 |
return prompt, md
|
327 |
|
|
|
353 |
|
354 |
modes = ["Kubectl command", "Kubernetes related", "Other"]
|
355 |
|
356 |
+
logging.info(f'{" Query Start ":-^40}')
|
357 |
+
logging.info("Classified as: " + modes[response_num])
|
358 |
|
359 |
modes[response_num] = f"**{modes[response_num]}**"
|
360 |
modes = " / ".join(modes)
|
|
|
422 |
res_prompt, res_semantic_search_prompt, res_google_search_prompt
|
423 |
)
|
424 |
|
425 |
+
logging.info("SEMANTIC BEFORE CLEANUP: ", gen_semantic_search)
|
426 |
+
logging.info("GOOGLE BEFORE CLEANUP: ", gen_google_search)
|
427 |
|
428 |
|
429 |
res_prompt, res_normal = cleanup(*gen_normal)
|
430 |
res_semantic_search_prompt, res_semantic_search = cleanup(*gen_semantic_search)
|
431 |
res_google_search_prompt, res_google_search = cleanup(*gen_google_search)
|
432 |
|
433 |
+
logging.info("SEMANTIC AFTER CLEANUP: ", res_semantic_search)
|
434 |
+
logging.info("GOOGLE AFTER CLEANUP: ", res_google_search)
|
435 |
|
436 |
if verbose:
|
437 |
return (
|