Spaces:
Paused
Paused
File size: 8,672 Bytes
36319c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
import torch
import pinecone
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from sentence_transformers.cross_encoder import CrossEncoder
import numpy as np
from torch import nn
# Set up semantic search
PINECONE_API_KEY = $PINECONE_API_KEY
def get_embedding(text):
embed_text = sentencetransformer_model.encode(text)
vector_text = embed_text.tolist()
return vector_text
def query_from_pinecone(query, top_k=3):
# get embedding from THE SAME embedder as the documents
query_embedding = get_embedding(query)
return index.query(
vector=query_embedding,
top_k=top_k,
include_metadata=True # gets the metadata (dates, text, etc)
).get('matches')
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
if not results_from_pinecone:
return []
if verbose:
print("Query:", query)
final_results = []
if re_rank:
if verbose:
print('Document ID (Hash)\t\tRetrieval Score\tCE Score\tText')
sentence_combinations = [[query, result_from_pinecone['metadata']['text']] for result_from_pinecone in results_from_pinecone]
# Compute the similarity scores for these combinations
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())
# Sort the scores in decreasing order
sim_scores_argsort = reversed(np.argsort(similarity_scores))
# Print the scores
for idx in sim_scores_argsort:
result_from_pinecone = results_from_pinecone[idx]
final_results.append(result_from_pinecone)
if verbose:
print(f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}")
return final_results
if verbose:
print('Document ID (Hash)\t\tRetrieval Score\tText')
for result_from_pinecone in results_from_pinecone:
final_results.append(result_from_pinecone)
if verbose:
print(f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}")
return final_results
def semantic_search(prompt):
final_results = get_results_from_pinecone(prompt, top_k=3, re_rank=True, verbose=True)
return 'First result:\n' + final_results[0]['metadata']['text'].replace('\n', ' ') + '\n' + 'Second result:\n' + final_results[1]['metadata']['text'].replace('\n', ' ') + '\n' + 'Third result:\n' + final_results[2]['metadata']['text'].replace('\n', ' ')
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
pinecone_key = PINECONE_API_KEY
INDEX_NAME = 'k8s-semantic-search'
NAMESPACE = 'default'
pinecone.init(api_key=pinecone_key, environment="gcp-starter")
if not INDEX_NAME in pinecone.list_indexes():
pinecone.create_index(
INDEX_NAME, # The name of the index
dimension=768, # The dimensionality of the vectors
metric='cosine', # The similarity metric to use when searching the index
pod_type='starter' # The type of Pinecone pod
)
index = pinecone.Index(INDEX_NAME)
# Set up mistral model
base_model_id = 'mistralai/Mistral-7B-Instruct-v0.1'
lora_model_id = 'ComponentSoft/mistral-kubectl-instruct'
tokenizer = AutoTokenizer.from_pretrained(
lora_model_id,
padding_side="left",
add_eos_token=False,
add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
use_cache=True,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(base_model, lora_model_id)
model.eval()
stop_terms=["</s>", "#End"]
eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in stop_terms]
category_terms=["</s>", "\n"]
category_eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in stop_terms]
class EvalStopCriterion(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
return any(torch.equal(e, input_ids[0][-len(e):]) for e in eos_token_ids_custom)
class CategoryStopCriterion(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
return any(torch.equal(e, input_ids[0][-len(e):]) for e in category_eos_token_ids_custom)
start_template = '### Answer:'
command_template = '# Command:'
end_template = '#End'
def text_to_text_generation(prompt):
prompt = prompt.strip()
''
is_kubectl_prompt = (
f"[INST] You are a helpful assistant who classifies prompts into three categories. Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n"
f"So for instance the following:\n"
f"List all pods in Kubernetes\n"
f"Would get a response:\n"
f"0 [/INST]"
f'text: "{prompt}"'
f'response (0/1/2): '
)
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
response = tokenizer.decode(model.generate(**model_input, max_new_tokens=8, pad_token_id=tokenizer.eos_token_id, repetition_penalty=1.15, stopping_criteria=StoppingCriteriaList([CategoryStopCriterion()]))[0], skip_special_tokens=True)
response = response[len(is_kubectl_prompt):]
print('-----------------------------QUERY START-----------------------------')
print('Prompt: ' + prompt)
print('Classified as: ' + response)
response_num = 2 # Default to generic question
if '0' in response:
response_num = 0
elif '1' in response:
response_num = 1
# Check if general question
if response_num == 0:
prompt = f'[INST] {prompt}\n Lets think step by step. [/INST] {start_template}'
elif response_num == 1:
retrieved_results = semantic_search(prompt)
print('Query:')
print(f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:')
prompt = f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:'
else:
prompt = f'[INST] {prompt} [/INST]'
# Generate output
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
response = tokenizer.decode(model.generate(**model_input, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id, repetition_penalty=1.15, stopping_criteria=StoppingCriteriaList([EvalStopCriterion()]))[0], skip_special_tokens=True)
# Get the relevalt parts
start = response.index(start_template) + len(start_template) if start_template in response else len(prompt)
start = response.index(command_template) + len(command_template) if command_template in response else start
end = response.index(end_template) if end_template in response else len(response)
true_response = response[start:end].strip()
print('Returned: ' + true_response)
print('------------------------------QUERY END------------------------------')
return true_response
iface = gr.Interface(fn=semantic_search, inputs="text", outputs="text")
iface.launch() |