from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) # Formats the prompt to hold all of the past messages def format_prompt(message, history): prompt = "" # String to add before every prompt prompt_prefix = "Please correct the grammar in the following sentence: " prompt_template = "[INST] " + prompt_prefix + "{} [/INST]" # Iterates through every past user input and response to be added to the prompt for user_prompt, bot_response in history: corrected_prompt = prompt_prefix + user_prompt #prompt += f"[INST] {corrected_prompt} [/INST]" prompt += prompt_template.format(user_prompt) prompt += f" {bot_response} " #print(f"HISTORIC PROMPT: \n\t[INST] {corrected_prompt} [/INST] {bot_response} ") # Also prepend the prefix to the current message #corrected_message = prompt_prefix + message #prompt += f"[INST] {corrected_message} [/INST]" prompt += prompt_template.format(message) print("\nPROMPT: \n\t" + prompt) return prompt def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict(temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42,) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] examples=[['Give me the grammatically correct version of the sentence: "We shood buy an car"', None, None, None, None, None, ], ["Give me an example exam question testing students on square roots on basic integers", None, None, None, None, None,], ["Would this block of HTML code run?\n```\n\n```", None, None, None, None, None,], ["I have been to New York last summer.", None, None, None, None, None,], ["We shood buy an car.", None, None, None, None, None,],] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="Mixtral 46.7B", examples=examples, concurrency_limit=20, ).launch(show_api=False)