Spaces:
Running
Running
File size: 3,604 Bytes
958557f 9814153 3a3ea8c 919832d b2631fe 871ce9c b2631fe 3a3ea8c fb05cd8 3a3ea8c b2631fe 871ce9c 3a3ea8c b2631fe 3a3ea8c 871ce9c b2631fe 3a3ea8c 9814153 919832d 5a86243 958557f e53bb43 958557f 80d968d 46bd600 958557f 2338a53 e9c195f bbc202f 958557f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
# Formats the prompt to hold all of the past messages
def format_prompt(message, history):
prompt = "<s>"
# String to add before every prompt
prompt_prefix = "Please correct the grammar in the following sentence: "
prompt_template = "[INST] " + prompt_prefix + "{} [/INST]"
# Iterates through every past user input and response to be added to the prompt
print("History Type: {}".format(type(history)))
for user_prompt, bot_response in history:
corrected_prompt = prompt_prefix + user_prompt
#prompt += f"[INST] {corrected_prompt} [/INST]"
prompt += prompt_template.format(user_prompt)
prompt += f" {bot_response}</s> "
#print(f"HISTORIC PROMPT: \n\t[INST] {corrected_prompt} [/INST] {bot_response}</s> ")
# Also prepend the prefix to the current message
#corrected_message = prompt_prefix + message
#prompt += f"[INST] {corrected_message} [/INST]"
prompt += prompt_template.format(message)
print("\nPROMPT: \n\t" + prompt)
return prompt
def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
print("System Prompt: '{}'".format(system_prompt))
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42,)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Textbox( label="System Prompt", default="You are an expert at English grammar" , max_lines=1, interactive=True, ),
gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ),
gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ),
gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ),
gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", )
]
examples=[['Give me the grammatically correct version of the sentence: "We shood buy an car"', None, None, None, None, None, ],
["Give me an example exam question testing students on square roots on basic integers", None, None, None, None, None,],
["Would this block of HTML code run?\n```\n\n```", None, None, None, None, None,],
["I have been to New York last summer.", None, None, None, None, None,],
["We shood buy an car.", None, None, None, None, None,],
["People is coming to my party.", None, None, None, None, None,],]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Mixtral 46.7B",
examples=examples,
concurrency_limit=20,
).launch(show_api=False) |