Spaces:
Running
Running
File size: 5,106 Bytes
958557f 9814153 2915268 3a3ea8c 919832d b2631fe f79dbe4 b2631fe f7657a2 f79dbe4 3a3ea8c 871ce9c 3a3ea8c f7657a2 3a3ea8c 871ce9c b2631fe 3a3ea8c 9814153 2915268 bdc235c 919832d 5335780 958557f e53bb43 111aa32 2915268 958557f 111aa32 958557f f79dbe4 46bd600 958557f 2338a53 e9c195f bbc202f 958557f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
# Formats the prompt to hold all of the past messages
def format_prompt1(message, history):
prompt = "<s>"
# String to add before every prompt
prompt_prefix = "Please correct the grammar in the following sentence:"
prompt_template = "[INST] " + prompt_prefix + " {} [/INST]"
#history.append("It is my friends house in England.", "It is my friend's house in England.")
#history.append("Every girl must bring their books to school.", "Every girl must bring her books to school.")
# Iterates through every past user input and response to be added to the prompt
for user_prompt, bot_response in history:
prompt += prompt_template.format(user_prompt)
prompt += f" {bot_response}</s> "
prompt += prompt_template.format(message)
print("\nPROMPT: \n\t" + prompt)
return prompt
def format_prompt(message, history):
prompt = "<s>"
# String to add before every prompt
#prompt_prefix = "Please correct the grammar in the following sentence:"
#prompt_template = "[INST] " + prompt_prefix + " {} [/INST]"
prompt_prefix = "Correct any grammatical errors in the following sentence and provide the corrected version:\n\nSentence: "
prompt_template = "[INST] " + prompt_prefix + ' "{}" [/INST] Corrected Sentence:'
print("History Type: {}".format(type(history)))
if type(history) != type(list()):
print("\nOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO\nOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO\nOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO\n")
#history.append("It is my friends house in England.", "It is my friend's house in England.")
#history.append("Every girl must bring their books to school.", "Every girl must bring her books to school.")
# Iterates through every past user input and response to be added to the prompt
for user_prompt, bot_response in history:
prompt += prompt_template.format(user_prompt)
prompt += f" {bot_response}</s> "
prompt += prompt_template.format(message)
print("PROMPT: \n\t{}\n".format(prompt))
return prompt
def format_my_prompt(user_input):
# Formatting the prompt as per the new template
prompt = f"<s> [INST] Please correct the grammatical errors in the following sentence: {user_input} [/INST] Model answer</s> [INST] Return only the grammatically corrected sentence. [/INST]"
return prompt
def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
print("\n\nSystem Prompt: '{}'".format(system_prompt))
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42,)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_my_prompt(prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Textbox( label="System Prompt", value="Correct the following sentence to make it grammatically accurate while maintaining the original meaning. Output only the corrected sentence." , max_lines=1, interactive=True, ),
gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ),
gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ),
gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ),
gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", )
]
examples=[['Give me the grammatically correct version of the sentence: "We shood buy an car"', None, None, None, None, None, ],
["Give me an example exam question testing students on square roots on basic integers", None, None, None, None, None,],
["Would this block of HTML code run?\n```\n\n```", None, None, None, None, None,],
["I have been to New York last summer.", None, None, None, None, None,],
["We shood buy an car.", None, None, None, None, None,],
["People is coming to my party.", None, None, None, None, None,],]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Mixtral 46.7B",
examples=examples,
concurrency_limit=20,
).launch(show_api=False) |