Spaces:
Runtime error
Runtime error
File size: 2,406 Bytes
29958a2 8565ee2 29958a2 2da962c 29958a2 e6cf7d1 29958a2 2da962c 859c26b 29958a2 2f1badd a3ba152 29958a2 2f1badd 29958a2 ce08539 6bfad4b 5fd18e6 29958a2 3cab9bb a8323ab bf7f0ca 29958a2 6bfad4b 29958a2 55bfa61 29958a2 c465829 29958a2 858501a 52c932d 858501a 29958a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
import torch
import torchvision
import torchvision.transforms as T
from torchvision.transforms import v2 as T2
import cv2
from PIL import Image
import numpy as np
output_res = (768,768)
conditioning_image_transforms = T.Compose(
[
T2.ScaleJitter(target_size=output_res, scale_range=(0.5, 3.0)),
T.RandomCrop(size=output_res, pad_if_needed=True, padding_mode="symmetric"),
T.ToTensor(),
T.Normalize([0.5], [0.5]),
]
)
cnet = ControlNetModel.from_pretrained("./models/catcon-controlnet-wd", torch_dtype=torch.float16, from_flax=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"./models/wd-1-5-b2",
controlnet=cnet,
torch_dtype=torch.float16,
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.enable_xformers_memory_efficient_attention()
generator = torch.manual_seed(0)
# inference function takes prompt, negative prompt and image
def infer(prompt, negative_prompt, image):
# implement your inference function here
cond_input = conditioning_image_transforms(np.array(image))
#cond_input = T.ToPILImage(cond_input)
output = pipe(
prompt,
cond_input[0],
generator=generator,
num_images_per_prompt=4,
num_inference_steps=20
)
return output.images
gr.Interface(
infer,
inputs=[
gr.Textbox(
label="Enter prompt",
max_lines=1,
placeholder="1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, watercolor, night, turtleneck",
),
gr.Textbox(
label="Enter negative prompt",
max_lines=1,
placeholder="low quality",
),
gr.Image(type="pil"),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
title="Generate controlled outputs with Categorical Conditioning on Waifu Diffusion 1.5 beta 2.",
description="This Space uses image examples as style conditioning.",
examples=[["1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, watercolor, night, turtleneck", "low quality", "wikipe_cond_1.png"]],
allow_flagging=False,
).launch(enable_queue=True)
|