added sort by langauge feature - Adithya S K
Browse files
app.py
CHANGED
@@ -8,16 +8,42 @@ import plotly.graph_objs as go
|
|
8 |
from huggingface_hub import HfApi
|
9 |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
10 |
from dotenv import load_dotenv
|
|
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
|
14 |
SERVER_URL = os.getenv("SERVER_URL")
|
15 |
|
|
|
16 |
def get_data():
|
17 |
response = requests.get(SERVER_URL)
|
18 |
data = response.json()
|
19 |
return data
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def main():
|
22 |
|
23 |
st.set_page_config(page_title="Indic LLM Leaderboard", layout="wide")
|
@@ -65,10 +91,6 @@ def main():
|
|
65 |
MMLU = item["result"]["MMLU"]["acc_norm"]
|
66 |
except KeyError:
|
67 |
MMLU = None
|
68 |
-
try:
|
69 |
-
Winograde = item["result"]["Winograde"]["acc_norm"]
|
70 |
-
except KeyError:
|
71 |
-
Winograde = None
|
72 |
try:
|
73 |
Translation = item["result"]["Translation"]["acc_norm"]
|
74 |
except KeyError:
|
@@ -80,7 +102,7 @@ def main():
|
|
80 |
|
81 |
all_models.append(model_name)
|
82 |
table_data.append({
|
83 |
-
"Model
|
84 |
"Language": language,
|
85 |
"Avergae": ALL,
|
86 |
"ARC-Easy": ARC_Easy,
|
@@ -88,60 +110,99 @@ def main():
|
|
88 |
"Hellaswag": Hellaswag,
|
89 |
"Boolq": Boolq,
|
90 |
"MMLU": MMLU,
|
91 |
-
"Winograde": Winograde,
|
92 |
"Translation": Translation,
|
93 |
"Generation": Generation
|
94 |
})
|
95 |
|
96 |
df = pd.DataFrame(table_data)
|
97 |
|
98 |
-
title = st.text_input('Model
|
99 |
|
|
|
|
|
100 |
col1, col2 = st.columns(2)
|
101 |
with col1:
|
102 |
benchmark_options = st.multiselect(
|
103 |
'Pick Benchmark',
|
104 |
-
['ARC-Easy', 'ARC-Challenge', 'Hellaswag', 'Boolq','MMLU','
|
105 |
with col2:
|
106 |
language_options = st.multiselect(
|
107 |
'Pick Languages',
|
108 |
['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'],['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
if title:
|
111 |
-
if ';' in title:
|
112 |
-
model_names = [name.strip() for name in title.split(';')]
|
113 |
-
filtered_df = df[df['Model Name'].isin(model_names)]
|
114 |
-
else:
|
115 |
-
filtered_df = df[df['Model Name'].str.contains(title, case=False, na=False)]
|
116 |
-
|
117 |
-
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
118 |
-
filtered_df = filtered_df[df.columns.intersection(['Model Name', 'Language'] + benchmark_options)]
|
119 |
-
|
120 |
-
# Calculate average across selected benchmark columns
|
121 |
-
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
122 |
-
|
123 |
-
# Display the filtered DataFrame
|
124 |
-
st.dataframe(filtered_df, use_container_width=True)
|
125 |
-
elif benchmark_options or language_options:
|
126 |
-
filtered_df = df[df['Language'].isin(language_options)]
|
127 |
-
filtered_df = filtered_df[df.columns.intersection(['Model Name', 'Language'] + benchmark_options)]
|
128 |
-
|
129 |
-
# Calculate average across selected benchmark columns
|
130 |
-
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
131 |
-
|
132 |
-
st.dataframe(filtered_df, use_container_width=True)
|
133 |
|
|
|
|
|
134 |
# Multiselect for comparing models
|
135 |
compare_models = st.multiselect(
|
136 |
'Pick Models to compare them',
|
137 |
-
df['Model
|
138 |
)
|
139 |
-
|
140 |
# Display DataFrame for selected models and their scores
|
141 |
if compare_models:
|
142 |
compare_data = []
|
143 |
for model in compare_models:
|
144 |
-
model_data = df[df['Model
|
145 |
compare_data.append(model_data)
|
146 |
if compare_data:
|
147 |
compare_df = pd.concat(compare_data)
|
|
|
8 |
from huggingface_hub import HfApi
|
9 |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
10 |
from dotenv import load_dotenv
|
11 |
+
from huggingface_hub import HfApi
|
12 |
+
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
13 |
|
14 |
load_dotenv()
|
15 |
|
16 |
SERVER_URL = os.getenv("SERVER_URL")
|
17 |
|
18 |
+
@st.cache_data
|
19 |
def get_data():
|
20 |
response = requests.get(SERVER_URL)
|
21 |
data = response.json()
|
22 |
return data
|
23 |
|
24 |
+
@st.cache_data
|
25 |
+
def get_model_info(df):
|
26 |
+
api = HfApi()
|
27 |
+
|
28 |
+
# Initialize new columns for likes and tags
|
29 |
+
df['Likes'] = None
|
30 |
+
|
31 |
+
# Iterate through DataFrame rows
|
32 |
+
for index, row in df.iterrows():
|
33 |
+
model = row['Model'].strip()
|
34 |
+
try:
|
35 |
+
model_info = api.model_info(repo_id=str(model))
|
36 |
+
df.loc[index, 'Likes'] = f"{model_info.likes}🧡"
|
37 |
+
# df.loc[index, 'Tags'] = ', '.join(model_info.tags)
|
38 |
+
|
39 |
+
except (RepositoryNotFoundError, RevisionNotFoundError):
|
40 |
+
df.loc[index, 'Likes'] = None
|
41 |
+
# df.loc[index, 'Tags'] = ''
|
42 |
+
|
43 |
+
return df
|
44 |
+
|
45 |
+
|
46 |
+
# @st.cache_data
|
47 |
def main():
|
48 |
|
49 |
st.set_page_config(page_title="Indic LLM Leaderboard", layout="wide")
|
|
|
91 |
MMLU = item["result"]["MMLU"]["acc_norm"]
|
92 |
except KeyError:
|
93 |
MMLU = None
|
|
|
|
|
|
|
|
|
94 |
try:
|
95 |
Translation = item["result"]["Translation"]["acc_norm"]
|
96 |
except KeyError:
|
|
|
102 |
|
103 |
all_models.append(model_name)
|
104 |
table_data.append({
|
105 |
+
"Model": model_name,
|
106 |
"Language": language,
|
107 |
"Avergae": ALL,
|
108 |
"ARC-Easy": ARC_Easy,
|
|
|
110 |
"Hellaswag": Hellaswag,
|
111 |
"Boolq": Boolq,
|
112 |
"MMLU": MMLU,
|
|
|
113 |
"Translation": Translation,
|
114 |
"Generation": Generation
|
115 |
})
|
116 |
|
117 |
df = pd.DataFrame(table_data)
|
118 |
|
119 |
+
title = st.text_input('Model', placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...")
|
120 |
|
121 |
+
on = st.checkbox('Sort by Language')
|
122 |
+
|
123 |
col1, col2 = st.columns(2)
|
124 |
with col1:
|
125 |
benchmark_options = st.multiselect(
|
126 |
'Pick Benchmark',
|
127 |
+
['ARC-Easy', 'ARC-Challenge', 'Hellaswag', 'Boolq','MMLU','Translation','Generation'],['ARC-Easy', 'ARC-Challenge', 'Hellaswag', 'Boolq','MMLU'])
|
128 |
with col2:
|
129 |
language_options = st.multiselect(
|
130 |
'Pick Languages',
|
131 |
['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'],['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'])
|
132 |
+
if on:
|
133 |
+
# Loop through each selected language
|
134 |
+
for language in language_options:
|
135 |
+
filtered_df = df[df['Language'] == language]
|
136 |
+
# Check if the filtered dataframe is not empty
|
137 |
+
if not filtered_df.empty:
|
138 |
+
st.subheader(f"{language.capitalize()[0]}{language[1:]}")
|
139 |
+
filtered_df.reset_index(drop=True, inplace=True)
|
140 |
+
# Display filtered dataframe
|
141 |
+
filtered_df = get_model_info(filtered_df)
|
142 |
+
if title:
|
143 |
+
if ';' in title:
|
144 |
+
model_names = [name.strip() for name in title.split(';')]
|
145 |
+
filtered_df = df[df['Model'].isin(model_names)]
|
146 |
+
else:
|
147 |
+
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
148 |
+
|
149 |
+
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
150 |
+
|
151 |
+
# Calculate average across selected benchmark columns
|
152 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
153 |
+
filtered_df.index += 1
|
154 |
+
st.dataframe(filtered_df, use_container_width=True)
|
155 |
+
elif benchmark_options or language_options:
|
156 |
+
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
157 |
+
|
158 |
+
# Calculate average across selected benchmark columns
|
159 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
160 |
+
|
161 |
+
filtered_df = get_model_info(filtered_df)
|
162 |
+
filtered_df.index += 1
|
163 |
+
st.dataframe(filtered_df, use_container_width=True)
|
164 |
+
# st.write('Feature activated!')
|
165 |
+
else:
|
166 |
+
|
167 |
+
if title:
|
168 |
+
if ';' in title:
|
169 |
+
model_names = [name.strip() for name in title.split(';')]
|
170 |
+
filtered_df = df[df['Model'].isin(model_names)]
|
171 |
+
else:
|
172 |
+
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
173 |
+
|
174 |
+
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
175 |
+
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
176 |
+
|
177 |
+
# Calculate average across selected benchmark columns
|
178 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
179 |
+
filtered_df.index += 1
|
180 |
+
# Display the filtered DataFrame
|
181 |
+
st.dataframe(filtered_df, use_container_width=True)
|
182 |
+
elif benchmark_options or language_options:
|
183 |
+
filtered_df = df[df['Language'].isin(language_options)]
|
184 |
+
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
185 |
+
|
186 |
+
# Calculate average across selected benchmark columns
|
187 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
188 |
+
|
189 |
+
filtered_df = get_model_info(filtered_df)
|
190 |
+
filtered_df.index += 1
|
191 |
+
st.dataframe(filtered_df, use_container_width=True)
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
|
195 |
+
|
196 |
# Multiselect for comparing models
|
197 |
compare_models = st.multiselect(
|
198 |
'Pick Models to compare them',
|
199 |
+
df['Model'].unique()
|
200 |
)
|
|
|
201 |
# Display DataFrame for selected models and their scores
|
202 |
if compare_models:
|
203 |
compare_data = []
|
204 |
for model in compare_models:
|
205 |
+
model_data = df[df['Model'] == model]
|
206 |
compare_data.append(model_data)
|
207 |
if compare_data:
|
208 |
compare_df = pd.concat(compare_data)
|