AdithyaSK commited on
Commit
1d4a3b7
·
1 Parent(s): cc8b0e5

udpated so that every model uploaded is verified - Adithya S K

Browse files
Files changed (1) hide show
  1. app.py +13 -20
app.py CHANGED
@@ -68,6 +68,7 @@ def main():
68
  for item in data:
69
  model_name = item.get("name")
70
  language = item.get("language")
 
71
  try:
72
  ALL = item["result"]["all"]["acc_norm"]
73
  except KeyError:
@@ -110,6 +111,7 @@ def main():
110
  "Boolq": Boolq,
111
  "MMLU": MMLU,
112
  "Translation": Translation,
 
113
  })
114
 
115
  df = pd.DataFrame(table_data)
@@ -124,7 +126,11 @@ def main():
124
 
125
  title = st.text_input('Model', placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...")
126
 
127
- on = st.checkbox('Sort by Language')
 
 
 
 
128
 
129
 
130
  col1, col2 = st.columns(2)
@@ -137,14 +143,11 @@ def main():
137
  'Pick Languages',
138
  ['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"],['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"])
139
  if on:
140
- # Loop through each selected language
141
  for language in language_options:
142
- filtered_df = df[df['Language'] == language]
143
- # Check if the filtered dataframe is not empty
144
  if not filtered_df.empty:
145
  st.subheader(f"{language.capitalize()[0]}{language[1:]}")
146
  filtered_df.reset_index(drop=True, inplace=True)
147
- # Display filtered dataframe
148
  filtered_df = get_model_info(filtered_df)
149
  if title:
150
  if ';' in title:
@@ -152,25 +155,19 @@ def main():
152
  filtered_df = df[df['Model'].isin(model_names)]
153
  else:
154
  filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
155
-
 
 
156
  filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
157
 
158
- # Calculate average across selected benchmark columns
159
  filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
160
  filtered_df.index += 1
161
  st.dataframe(filtered_df, use_container_width=True)
162
  elif benchmark_options or language_options:
163
  filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
164
-
165
- # Calculate average across selected benchmark columns
166
  filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
167
-
168
- filtered_df = get_model_info(filtered_df)
169
- filtered_df.index += 1
170
  st.dataframe(filtered_df, use_container_width=True)
171
- # st.write('Feature activated!')
172
  else:
173
-
174
  if title:
175
  if ';' in title:
176
  model_names = [name.strip() for name in title.split(';')]
@@ -179,22 +176,18 @@ def main():
179
  filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
180
 
181
  filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
 
182
  filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
183
 
184
- # Calculate average across selected benchmark columns
185
  filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
186
  filtered_df.index += 1
187
- # Display the filtered DataFrame
188
  st.dataframe(filtered_df, use_container_width=True)
189
  elif benchmark_options or language_options:
190
  filtered_df = df[df['Language'].isin(language_options)]
 
191
  filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
192
 
193
- # Calculate average across selected benchmark columns
194
  filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
195
-
196
- filtered_df = get_model_info(filtered_df)
197
- filtered_df.index += 1
198
  st.dataframe(filtered_df, use_container_width=True)
199
 
200
 
 
68
  for item in data:
69
  model_name = item.get("name")
70
  language = item.get("language")
71
+ is_verified= item.get("is_verified")
72
  try:
73
  ALL = item["result"]["all"]["acc_norm"]
74
  except KeyError:
 
111
  "Boolq": Boolq,
112
  "MMLU": MMLU,
113
  "Translation": Translation,
114
+ "Verified": is_verified,
115
  })
116
 
117
  df = pd.DataFrame(table_data)
 
126
 
127
  title = st.text_input('Model', placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...")
128
 
129
+ option_column1, option_column2 = st.columns(2)
130
+ with option_column1:
131
+ on = st.checkbox('Sort by Language')
132
+ with option_column2:
133
+ is_verified = st.checkbox('Verified')
134
 
135
 
136
  col1, col2 = st.columns(2)
 
143
  'Pick Languages',
144
  ['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"],['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"])
145
  if on:
 
146
  for language in language_options:
147
+ filtered_df = df[(df['Language'] == language) & (df['Verified'] == is_verified)]
 
148
  if not filtered_df.empty:
149
  st.subheader(f"{language.capitalize()[0]}{language[1:]}")
150
  filtered_df.reset_index(drop=True, inplace=True)
 
151
  filtered_df = get_model_info(filtered_df)
152
  if title:
153
  if ';' in title:
 
155
  filtered_df = df[df['Model'].isin(model_names)]
156
  else:
157
  filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
158
+
159
+ filtered_df = filtered_df[filtered_df['Language'] == language]
160
+ filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
161
  filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
162
 
 
163
  filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
164
  filtered_df.index += 1
165
  st.dataframe(filtered_df, use_container_width=True)
166
  elif benchmark_options or language_options:
167
  filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
 
 
168
  filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
 
 
 
169
  st.dataframe(filtered_df, use_container_width=True)
 
170
  else:
 
171
  if title:
172
  if ';' in title:
173
  model_names = [name.strip() for name in title.split(';')]
 
176
  filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
177
 
178
  filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
179
+ filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
180
  filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
181
 
 
182
  filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
183
  filtered_df.index += 1
 
184
  st.dataframe(filtered_df, use_container_width=True)
185
  elif benchmark_options or language_options:
186
  filtered_df = df[df['Language'].isin(language_options)]
187
+ filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
188
  filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
189
 
 
190
  filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
 
 
 
191
  st.dataframe(filtered_df, use_container_width=True)
192
 
193