udpated so that every model uploaded is verified - Adithya S K
Browse files
app.py
CHANGED
@@ -68,6 +68,7 @@ def main():
|
|
68 |
for item in data:
|
69 |
model_name = item.get("name")
|
70 |
language = item.get("language")
|
|
|
71 |
try:
|
72 |
ALL = item["result"]["all"]["acc_norm"]
|
73 |
except KeyError:
|
@@ -110,6 +111,7 @@ def main():
|
|
110 |
"Boolq": Boolq,
|
111 |
"MMLU": MMLU,
|
112 |
"Translation": Translation,
|
|
|
113 |
})
|
114 |
|
115 |
df = pd.DataFrame(table_data)
|
@@ -124,7 +126,11 @@ def main():
|
|
124 |
|
125 |
title = st.text_input('Model', placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...")
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
128 |
|
129 |
|
130 |
col1, col2 = st.columns(2)
|
@@ -137,14 +143,11 @@ def main():
|
|
137 |
'Pick Languages',
|
138 |
['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"],['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"])
|
139 |
if on:
|
140 |
-
# Loop through each selected language
|
141 |
for language in language_options:
|
142 |
-
filtered_df = df[df['Language'] == language]
|
143 |
-
# Check if the filtered dataframe is not empty
|
144 |
if not filtered_df.empty:
|
145 |
st.subheader(f"{language.capitalize()[0]}{language[1:]}")
|
146 |
filtered_df.reset_index(drop=True, inplace=True)
|
147 |
-
# Display filtered dataframe
|
148 |
filtered_df = get_model_info(filtered_df)
|
149 |
if title:
|
150 |
if ';' in title:
|
@@ -152,25 +155,19 @@ def main():
|
|
152 |
filtered_df = df[df['Model'].isin(model_names)]
|
153 |
else:
|
154 |
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
155 |
-
|
|
|
|
|
156 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
157 |
|
158 |
-
# Calculate average across selected benchmark columns
|
159 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
160 |
filtered_df.index += 1
|
161 |
st.dataframe(filtered_df, use_container_width=True)
|
162 |
elif benchmark_options or language_options:
|
163 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
164 |
-
|
165 |
-
# Calculate average across selected benchmark columns
|
166 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
167 |
-
|
168 |
-
filtered_df = get_model_info(filtered_df)
|
169 |
-
filtered_df.index += 1
|
170 |
st.dataframe(filtered_df, use_container_width=True)
|
171 |
-
# st.write('Feature activated!')
|
172 |
else:
|
173 |
-
|
174 |
if title:
|
175 |
if ';' in title:
|
176 |
model_names = [name.strip() for name in title.split(';')]
|
@@ -179,22 +176,18 @@ def main():
|
|
179 |
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
180 |
|
181 |
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
|
|
182 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
183 |
|
184 |
-
# Calculate average across selected benchmark columns
|
185 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
186 |
filtered_df.index += 1
|
187 |
-
# Display the filtered DataFrame
|
188 |
st.dataframe(filtered_df, use_container_width=True)
|
189 |
elif benchmark_options or language_options:
|
190 |
filtered_df = df[df['Language'].isin(language_options)]
|
|
|
191 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
192 |
|
193 |
-
# Calculate average across selected benchmark columns
|
194 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
195 |
-
|
196 |
-
filtered_df = get_model_info(filtered_df)
|
197 |
-
filtered_df.index += 1
|
198 |
st.dataframe(filtered_df, use_container_width=True)
|
199 |
|
200 |
|
|
|
68 |
for item in data:
|
69 |
model_name = item.get("name")
|
70 |
language = item.get("language")
|
71 |
+
is_verified= item.get("is_verified")
|
72 |
try:
|
73 |
ALL = item["result"]["all"]["acc_norm"]
|
74 |
except KeyError:
|
|
|
111 |
"Boolq": Boolq,
|
112 |
"MMLU": MMLU,
|
113 |
"Translation": Translation,
|
114 |
+
"Verified": is_verified,
|
115 |
})
|
116 |
|
117 |
df = pd.DataFrame(table_data)
|
|
|
126 |
|
127 |
title = st.text_input('Model', placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...")
|
128 |
|
129 |
+
option_column1, option_column2 = st.columns(2)
|
130 |
+
with option_column1:
|
131 |
+
on = st.checkbox('Sort by Language')
|
132 |
+
with option_column2:
|
133 |
+
is_verified = st.checkbox('Verified')
|
134 |
|
135 |
|
136 |
col1, col2 = st.columns(2)
|
|
|
143 |
'Pick Languages',
|
144 |
['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"],['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"])
|
145 |
if on:
|
|
|
146 |
for language in language_options:
|
147 |
+
filtered_df = df[(df['Language'] == language) & (df['Verified'] == is_verified)]
|
|
|
148 |
if not filtered_df.empty:
|
149 |
st.subheader(f"{language.capitalize()[0]}{language[1:]}")
|
150 |
filtered_df.reset_index(drop=True, inplace=True)
|
|
|
151 |
filtered_df = get_model_info(filtered_df)
|
152 |
if title:
|
153 |
if ';' in title:
|
|
|
155 |
filtered_df = df[df['Model'].isin(model_names)]
|
156 |
else:
|
157 |
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
158 |
+
|
159 |
+
filtered_df = filtered_df[filtered_df['Language'] == language]
|
160 |
+
filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
|
161 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
162 |
|
|
|
163 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
164 |
filtered_df.index += 1
|
165 |
st.dataframe(filtered_df, use_container_width=True)
|
166 |
elif benchmark_options or language_options:
|
167 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
|
|
|
|
168 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
|
|
|
|
|
|
169 |
st.dataframe(filtered_df, use_container_width=True)
|
|
|
170 |
else:
|
|
|
171 |
if title:
|
172 |
if ';' in title:
|
173 |
model_names = [name.strip() for name in title.split(';')]
|
|
|
176 |
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
177 |
|
178 |
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
179 |
+
filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
|
180 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
181 |
|
|
|
182 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
183 |
filtered_df.index += 1
|
|
|
184 |
st.dataframe(filtered_df, use_container_width=True)
|
185 |
elif benchmark_options or language_options:
|
186 |
filtered_df = df[df['Language'].isin(language_options)]
|
187 |
+
filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
|
188 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
189 |
|
|
|
190 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
|
|
|
|
|
|
191 |
st.dataframe(filtered_df, use_container_width=True)
|
192 |
|
193 |
|