File size: 5,448 Bytes
e909f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pathlib
import subprocess
import sys
import tarfile

import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch

if os.environ.get('SYSTEM') == 'spaces':
    subprocess.call('git apply ../patch'.split(), cwd='gan-control')

sys.path.insert(0, 'gan-control/src')

from gan_control.inference.controller import Controller

TITLE = 'amazon-research/gan-control'
DESCRIPTION = 'This is a demo for https://github.com/amazon-research/gan-control.'
ARTICLE = None

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def download_models() -> None:
    model_dir = pathlib.Path('controller_age015id025exp02hai04ori02gam15')
    if not model_dir.exists():
        path = huggingface_hub.hf_hub_download(
            'hysts/gan-control',
            'controller_age015id025exp02hai04ori02gam15.tar.gz',
            use_auth_token=TOKEN)
        with tarfile.open(path) as f:
            f.extractall()


@torch.inference_mode()
def run(
    seed: int,
    truncation: float,
    yaw: int,
    pitch: int,
    age: int,
    hair_color_r: float,
    hair_color_g: float,
    hair_color_b: float,
    nrows: int,
    ncols: int,
    controller: Controller,
    device: torch.device,
) -> PIL.Image.Image:
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
    batch_size = nrows * ncols
    latent_size = controller.config.model_config['latent_size']
    latent = torch.from_numpy(
        np.random.RandomState(seed).randn(batch_size,
                                          latent_size)).float().to(device)

    initial_image_tensors, initial_latent_z, initial_latent_w = controller.gen_batch(
        latent=latent, truncation=truncation)
    res0 = controller.make_resized_grid_image(initial_image_tensors,
                                              nrow=ncols)

    pose_control = torch.tensor([[yaw, pitch, 0]], dtype=torch.float32)
    image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
        latent=initial_latent_w,
        input_is_latent=True,
        orientation=pose_control)
    res1 = controller.make_resized_grid_image(image_tensors, nrow=ncols)

    age_control = torch.tensor([[age]], dtype=torch.float32)
    image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
        latent=initial_latent_w, input_is_latent=True, age=age_control)
    res2 = controller.make_resized_grid_image(image_tensors, nrow=ncols)

    hair_color = torch.tensor([[hair_color_r, hair_color_g, hair_color_b]],
                              dtype=torch.float32) / 255
    hair_color = torch.clamp(hair_color, 0, 1)
    image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
        latent=initial_latent_w, input_is_latent=True, hair=hair_color)
    res3 = controller.make_resized_grid_image(image_tensors, nrow=ncols)

    return res0, res1, res2, res3


def main():
    args = parse_args()
    device = torch.device(args.device)

    download_models()

    path = 'controller_age015id025exp02hai04ori02gam15/'
    controller = Controller(path, device)

    func = functools.partial(run, controller=controller, device=device)
    func = functools.update_wrapper(func, run)

    gr.Interface(
        func,
        [
            gr.inputs.Number(default=0, label='Seed'),
            gr.inputs.Slider(0, 1, step=0.1, default=0.7, label='Truncation'),
            gr.inputs.Slider(-90, 90, step=1, default=30, label='Yaw'),
            gr.inputs.Slider(-90, 90, step=1, default=0, label='Pitch'),
            gr.inputs.Slider(15, 75, step=1, default=75, label='Age'),
            gr.inputs.Slider(
                0, 255, step=1, default=186, label='Hair Color (R)'),
            gr.inputs.Slider(
                0, 255, step=1, default=158, label='Hair Color (G)'),
            gr.inputs.Slider(
                0, 255, step=1, default=92, label='Hair Color (B)'),
            gr.inputs.Slider(1, 10, step=1, default=1, label='Number of Rows'),
            gr.inputs.Slider(
                1, 10, step=1, default=5, label='Number of Columns'),
        ],
        [
            gr.outputs.Image(type='pil', label='Generated Image'),
            gr.outputs.Image(type='pil', label='Head Pose Controlled'),
            gr.outputs.Image(type='pil', label='Age Controlled'),
            gr.outputs.Image(type='pil', label='Hair Color Controlled'),
        ],
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()