Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_keras | |
import gradio as gr | |
from rdkit import Chem, RDLogger | |
from rdkit.Chem.Draw import IPythonConsole, MolsToGridImage | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow import keras | |
# Config | |
NUM_ATOMS = 9 # Maximum number of atoms | |
ATOM_DIM = 4 + 1 # Number of atom types | |
BOND_DIM = 4 + 1 # Number of bond types | |
LATENT_DIM = 64 # Size of the latent space | |
RDLogger.DisableLog("rdApp.*") | |
def graph_to_molecule(graph): | |
# Unpack graph | |
adjacency, features = graph | |
# RWMol is a molecule object intended to be edited | |
molecule = Chem.RWMol() | |
# Remove "no atoms" & atoms with no bonds | |
keep_idx = np.where( | |
(np.argmax(features, axis=1) != ATOM_DIM - 1) | |
& (np.sum(adjacency[:-1], axis=(0, 1)) != 0) | |
)[0] | |
features = features[keep_idx] | |
adjacency = adjacency[:, keep_idx, :][:, :, keep_idx] | |
# Add atoms to molecule | |
for atom_type_idx in np.argmax(features, axis=1): | |
atom = Chem.Atom(atom_mapping[atom_type_idx]) | |
_ = molecule.AddAtom(atom) | |
# Add bonds between atoms in molecule; based on the upper triangles | |
# of the [symmetric] adjacency tensor | |
(bonds_ij, atoms_i, atoms_j) = np.where(np.triu(adjacency) == 1) | |
for (bond_ij, atom_i, atom_j) in zip(bonds_ij, atoms_i, atoms_j): | |
if atom_i == atom_j or bond_ij == BOND_DIM - 1: | |
continue | |
bond_type = bond_mapping[bond_ij] | |
molecule.AddBond(int(atom_i), int(atom_j), bond_type) | |
# Sanitize the molecule; for more information on sanitization, see | |
# https://www.rdkit.org/docs/RDKit_Book.html#molecular-sanitization | |
flag = Chem.SanitizeMol(molecule, catchErrors=True) | |
# Let's be strict. If sanitization fails, return None | |
if flag != Chem.SanitizeFlags.SANITIZE_NONE: | |
return None | |
return molecule | |
generator = from_pretrained_keras("keras-io/wgan-molecular-graphs") | |
def predict(num_mol): | |
samples = num_mol*2 | |
z = tf.random.normal((samples, LATENT_DIM)) | |
graph = generator.predict(z) | |
# obtain one-hot encoded adjacency tensor | |
adjacency = tf.argmax(graph[0], axis=1) | |
adjacency = tf.one_hot(adjacency, depth=BOND_DIM, axis=1) | |
# Remove potential self-loops from adjacency | |
adjacency = tf.linalg.set_diag(adjacency, tf.zeros(tf.shape(adjacency)[:-1])) | |
# obtain one-hot encoded feature tensor | |
features = tf.argmax(graph[1], axis=2) | |
features = tf.one_hot(features, depth=ATOM_DIM, axis=2) | |
molecules = [ | |
graph_to_molecule([adjacency[i].numpy(), features[i].numpy()]) | |
for i in range(samples) | |
] | |
MolsToGridImage( | |
[m for m in molecules if m is not None][:num_mol], molsPerRow=5, subImgSize=(150, 150), returnPNG=False, | |
).save("img.png") | |
return 'img.png' | |
gr.Interface( | |
predict, | |
inputs=[ | |
gr.inputs.Slider(5, 50, label='Number of Molecular Graphs', step=5, default=10), | |
], | |
outputs="image", | |
).launch(debug=True) |