Spaces:
Running
Running
import os | |
import time | |
import gradio as gr | |
import numpy as np | |
from dotenv import load_dotenv | |
from elevenlabs import ElevenLabs | |
from distil_whisper_fastrtc import get_stt_model | |
from fastapi import FastAPI | |
from fastrtc import ( | |
AdditionalOutputs, | |
ReplyOnPause, | |
Stream, | |
get_tts_model, | |
get_twilio_turn_credentials, | |
) | |
from gradio.utils import get_space | |
from groq import Groq | |
from numpy.typing import NDArray | |
load_dotenv() | |
groq_client = Groq() | |
tts_client = get_tts_model() | |
stt_model = get_stt_model() | |
# See "Talk to Claude" in Cookbook for an example of how to keep | |
# track of the chat history. | |
def response( | |
audio: tuple[int, NDArray[np.int16 | np.float32]], | |
chatbot: list[dict] | None = None, | |
): | |
chatbot = chatbot or [] | |
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot] | |
start = time.time() | |
text = stt_model.stt(audio) | |
print("transcription", time.time() - start) | |
print("prompt", text) | |
chatbot.append({"role": "user", "content": text}) | |
yield AdditionalOutputs(chatbot) | |
messages.append({"role": "user", "content": text}) | |
response_text = ( | |
groq_client.chat.completions.create( | |
model="llama-3.1-8b-instant", | |
max_tokens=512, | |
messages=messages, # type: ignore | |
) | |
.choices[0] | |
.message.content | |
) | |
chatbot.append({"role": "assistant", "content": response_text}) | |
# Convert response to audio using TTS model | |
for audio_chunk in tts_model.stream_tts_sync(response_text or ""): | |
# Yield the audio chunk | |
yield audio_chunk | |
yield AdditionalOutputs(chatbot) | |
chatbot = gr.Chatbot(type="messages") | |
stream = Stream( | |
modality="audio", | |
mode="send-receive", | |
handler=ReplyOnPause(response, input_sample_rate=16000), | |
additional_outputs_handler=lambda a, b: b, | |
additional_inputs=[chatbot], | |
additional_outputs=[chatbot], | |
rtc_configuration=get_twilio_turn_credentials() if get_space() else None, | |
concurrency_limit=5 if get_space() else None, | |
time_limit=90 if get_space() else None, | |
ui_args={"title": "LLM Voice Chat (Powered by Groq, ElevenLabs, and WebRTC ⚡️)"}, | |
) | |
# Mount the STREAM UI to the FastAPI app | |
# Because I don't want to build the UI manually | |
app = FastAPI() | |
app = gr.mount_gradio_app(app, stream.ui, path="/") | |
if __name__ == "__main__": | |
import os | |
os.environ["GRADIO_SSR_MODE"] = "false" | |
if (mode := os.getenv("MODE")) == "UI": | |
stream.ui.launch(server_port=7860) | |
elif mode == "PHONE": | |
stream.fastphone(host="0.0.0.0", port=7860) | |
else: | |
stream.ui.launch(server_port=7860) | |