Spaces:
Sleeping
Sleeping
chore: Add streamlit app for analyzing Terms of Service
Browse files- app.py +113 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
+
from utils.text_processing import extract_text_from_pdf, split_into_clauses
|
| 6 |
+
from utils.model_utils import predict_unfairness
|
| 7 |
+
|
| 8 |
+
# Set page title and favicon
|
| 9 |
+
st.set_page_config(
|
| 10 |
+
page_title="Terms of Service Analyzer",
|
| 11 |
+
page_icon="๐",
|
| 12 |
+
layout="wide"
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# Load model and tokenizer from Hugging Face
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model():
|
| 18 |
+
model = AutoModelForSequenceClassification.from_pretrained("CodeHima/Tos-Roberta")
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained("CodeHima/Tos-Roberta")
|
| 20 |
+
return model, tokenizer
|
| 21 |
+
|
| 22 |
+
model, tokenizer = load_model()
|
| 23 |
+
|
| 24 |
+
st.title("๐ Terms of Service Analyzer")
|
| 25 |
+
|
| 26 |
+
# File upload
|
| 27 |
+
uploaded_file = st.file_uploader("Choose a PDF or text file", type=["pdf", "txt"])
|
| 28 |
+
|
| 29 |
+
# Text input
|
| 30 |
+
text_input = st.text_area("Or paste your Terms of Service here")
|
| 31 |
+
|
| 32 |
+
if uploaded_file is not None or text_input:
|
| 33 |
+
# Create a progress bar
|
| 34 |
+
progress_bar = st.progress(0)
|
| 35 |
+
|
| 36 |
+
# Create a status text
|
| 37 |
+
status_text = st.empty()
|
| 38 |
+
|
| 39 |
+
if uploaded_file is not None:
|
| 40 |
+
status_text.text("Reading file...")
|
| 41 |
+
progress_bar.progress(10)
|
| 42 |
+
if uploaded_file.type == "application/pdf":
|
| 43 |
+
text = extract_text_from_pdf(uploaded_file)
|
| 44 |
+
else:
|
| 45 |
+
text = uploaded_file.getvalue().decode("utf-8")
|
| 46 |
+
else:
|
| 47 |
+
text = text_input
|
| 48 |
+
|
| 49 |
+
status_text.text("Splitting into clauses...")
|
| 50 |
+
progress_bar.progress(30)
|
| 51 |
+
clauses = split_into_clauses(text)
|
| 52 |
+
|
| 53 |
+
results = []
|
| 54 |
+
total_clauses = len(clauses)
|
| 55 |
+
|
| 56 |
+
for i, clause in enumerate(clauses):
|
| 57 |
+
status_text.text(f"Analyzing clause {i+1} of {total_clauses}...")
|
| 58 |
+
# Update progress calculation to ensure it's always between 0 and 100
|
| 59 |
+
progress = min(30 + int((i+1) / total_clauses * 60), 90)
|
| 60 |
+
progress_bar.progress(progress)
|
| 61 |
+
label, probabilities = predict_unfairness(clause, model, tokenizer)
|
| 62 |
+
results.append({
|
| 63 |
+
"clause": clause,
|
| 64 |
+
"label": label,
|
| 65 |
+
"probabilities": probabilities
|
| 66 |
+
})
|
| 67 |
+
|
| 68 |
+
status_text.text("Preparing results...")
|
| 69 |
+
progress_bar.progress(100)
|
| 70 |
+
|
| 71 |
+
df = pd.DataFrame(results)
|
| 72 |
+
|
| 73 |
+
# Calculate summary
|
| 74 |
+
total_clauses = len(df)
|
| 75 |
+
clearly_fair = sum(df['label'] == 'clearly_fair')
|
| 76 |
+
potentially_unfair = sum(df['label'] == 'potentially_unfair')
|
| 77 |
+
clearly_unfair = sum(df['label'] == 'clearly_unfair')
|
| 78 |
+
|
| 79 |
+
# Clear the progress bar and status text
|
| 80 |
+
progress_bar.empty()
|
| 81 |
+
status_text.empty()
|
| 82 |
+
|
| 83 |
+
# Display summary
|
| 84 |
+
st.header("Summary")
|
| 85 |
+
col1, col2, col3 = st.columns(3)
|
| 86 |
+
col1.metric("Clearly Fair", clearly_fair, f"{clearly_fair/total_clauses:.1%}")
|
| 87 |
+
col2.metric("Potentially Unfair", potentially_unfair, f"{potentially_unfair/total_clauses:.1%}")
|
| 88 |
+
col3.metric("Clearly Unfair", clearly_unfair, f"{clearly_unfair/total_clauses:.1%}")
|
| 89 |
+
|
| 90 |
+
# Recommendation
|
| 91 |
+
if clearly_unfair > 0 or potentially_unfair / total_clauses > 0.3:
|
| 92 |
+
st.warning("โ ๏ธ Exercise caution! This ToS contains unfair or potentially unfair clauses.")
|
| 93 |
+
elif potentially_unfair > 0:
|
| 94 |
+
st.info("โน๏ธ Proceed with awareness. This ToS contains some potentially unfair clauses.")
|
| 95 |
+
else:
|
| 96 |
+
st.success("โ
This ToS appears to be fair. Always read carefully nonetheless.")
|
| 97 |
+
|
| 98 |
+
# Display results
|
| 99 |
+
st.header("Detailed Analysis")
|
| 100 |
+
for _, row in df.iterrows():
|
| 101 |
+
if row['label'] == 'clearly_fair':
|
| 102 |
+
st.success(f"**{row['label'].replace('_', ' ').title()}:** {row['clause']}")
|
| 103 |
+
elif row['label'] == 'potentially_unfair':
|
| 104 |
+
st.warning(f"**{row['label'].replace('_', ' ').title()}:** {row['clause']}")
|
| 105 |
+
else:
|
| 106 |
+
st.error(f"**{row['label'].replace('_', ' ').title()}:** {row['clause']}")
|
| 107 |
+
|
| 108 |
+
st.write(f"Probabilities: Clearly Fair: {row['probabilities'][0]:.2f}, "
|
| 109 |
+
f"Potentially Unfair: {row['probabilities'][1]:.2f}, "
|
| 110 |
+
f"Clearly Unfair: {row['probabilities'][2]:.2f}")
|
| 111 |
+
st.divider()
|
| 112 |
+
else:
|
| 113 |
+
st.info("Please upload a file or paste your Terms of Service to begin analysis.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
pandas
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
PyPDF2
|
| 6 |
+
spacy
|