|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  | from datetime import datetime, timedelta, timezone | 
					
						
						|  |  | 
					
						
						|  | import huggingface_hub | 
					
						
						|  | from huggingface_hub import ModelCard | 
					
						
						|  | from huggingface_hub.hf_api import ModelInfo | 
					
						
						|  | from transformers import AutoConfig | 
					
						
						|  | from transformers.models.auto.tokenization_auto import AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | def check_model_card(repo_id: str) -> tuple[bool, str]: | 
					
						
						|  | """Checks if the model card and license exist and have been filled""" | 
					
						
						|  | try: | 
					
						
						|  | card = ModelCard.load(repo_id) | 
					
						
						|  | except huggingface_hub.utils.EntryNotFoundError: | 
					
						
						|  | return False, "Please add a model card to your model to explain how you trained/fine-tuned it." | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if card.data.license is None: | 
					
						
						|  | if not ("license_name" in card.data and "license_link" in card.data): | 
					
						
						|  | return False, ( | 
					
						
						|  | "License not found. Please add a license to your model card using the `license` metadata or a" | 
					
						
						|  | " `license_name`/`license_link` pair." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(card.text) < 200: | 
					
						
						|  | return False, "Please add a description to your model card, it is too short." | 
					
						
						|  |  | 
					
						
						|  | return True, "" | 
					
						
						|  |  | 
					
						
						|  | def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]: | 
					
						
						|  | """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses.""" | 
					
						
						|  | try: | 
					
						
						|  | config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) | 
					
						
						|  | if test_tokenizer: | 
					
						
						|  | try: | 
					
						
						|  | tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) | 
					
						
						|  | except ValueError as e: | 
					
						
						|  | return ( | 
					
						
						|  | False, | 
					
						
						|  | f"uses a tokenizer which is not in a transformers release: {e}", | 
					
						
						|  | None | 
					
						
						|  | ) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None) | 
					
						
						|  | return True, None, config | 
					
						
						|  |  | 
					
						
						|  | except ValueError: | 
					
						
						|  | return ( | 
					
						
						|  | False, | 
					
						
						|  | "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", | 
					
						
						|  | None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return False, "was not found on hub!", None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_model_size(model_info: ModelInfo, precision: str): | 
					
						
						|  | """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" | 
					
						
						|  | try: | 
					
						
						|  | model_size = round(model_info.safetensors["total"] / 1e9, 3) | 
					
						
						|  | except (AttributeError, TypeError): | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 | 
					
						
						|  | model_size = size_factor * model_size | 
					
						
						|  | return model_size | 
					
						
						|  |  | 
					
						
						|  | def get_model_arch(model_info: ModelInfo): | 
					
						
						|  | """Gets the model architecture from the configuration""" | 
					
						
						|  | return model_info.config.get("architectures", "Unknown") | 
					
						
						|  |  | 
					
						
						|  | def already_submitted_models(requested_models_dir: str) -> set[str]: | 
					
						
						|  | """Gather a list of already submitted models to avoid duplicates""" | 
					
						
						|  | depth = 1 | 
					
						
						|  | file_names = [] | 
					
						
						|  | users_to_submission_dates = defaultdict(list) | 
					
						
						|  |  | 
					
						
						|  | for root, _, files in os.walk(requested_models_dir): | 
					
						
						|  | current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) | 
					
						
						|  | if current_depth == depth: | 
					
						
						|  | for file in files: | 
					
						
						|  | if not file.endswith(".json"): | 
					
						
						|  | continue | 
					
						
						|  | with open(os.path.join(root, file), "r") as f: | 
					
						
						|  | info = json.load(f) | 
					
						
						|  | file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if info["model"].count("/") == 0 or "submitted_time" not in info: | 
					
						
						|  | continue | 
					
						
						|  | organisation, _ = info["model"].split("/") | 
					
						
						|  | users_to_submission_dates[organisation].append(info["submitted_time"]) | 
					
						
						|  |  | 
					
						
						|  | return set(file_names), users_to_submission_dates | 
					
						
						|  |  |