Update evaluate.py
Browse files- evaluate.py +308 -117
evaluate.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# evaluate.py - Handles evaluation and comparing tasks
|
2 |
|
3 |
import os
|
4 |
import glob
|
@@ -13,6 +13,9 @@ from pydub import AudioSegment
|
|
13 |
from flask import jsonify
|
14 |
from werkzeug.utils import secure_filename
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
|
|
|
16 |
|
17 |
# Import necessary functions from translator.py
|
18 |
from translator import get_asr_model, get_asr_processor, LANGUAGE_CODES
|
@@ -20,9 +23,18 @@ from translator import get_asr_model, get_asr_processor, LANGUAGE_CODES
|
|
20 |
# Configure logging
|
21 |
logger = logging.getLogger("speech_api")
|
22 |
|
23 |
-
#
|
|
|
|
|
|
|
|
|
24 |
EVALUATION_CACHE = {}
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
def calculate_similarity(text1, text2):
|
27 |
"""Calculate text similarity percentage."""
|
28 |
def clean_text(text):
|
@@ -105,8 +117,130 @@ def search_reference_directories():
|
|
105 |
|
106 |
return found_dirs
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def init_reference_audio(reference_dir, output_dir):
|
109 |
-
"""Initialize reference audio directories and
|
110 |
try:
|
111 |
# Create the output directory first
|
112 |
os.makedirs(output_dir, exist_ok=True)
|
@@ -179,7 +313,7 @@ def init_reference_audio(reference_dir, output_dir):
|
|
179 |
except Exception as e:
|
180 |
logger.warning(f"β οΈ Failed to copy reference files: {str(e)}")
|
181 |
|
182 |
-
# Log the final contents, excluding dummy files
|
183 |
pattern_dirs = [d for d in os.listdir(working_dir)
|
184 |
if os.path.isdir(os.path.join(working_dir, d))]
|
185 |
|
@@ -191,8 +325,6 @@ def init_reference_audio(reference_dir, output_dir):
|
|
191 |
# Count only non-dummy files
|
192 |
valid_files = [f for f in wav_files if "dummy_reference" not in f]
|
193 |
total_wav_files += len(valid_files)
|
194 |
-
# Remove the individual directory logging
|
195 |
-
# logger.info(f" - {pattern}: {len(valid_files)} valid WAV files")
|
196 |
|
197 |
logger.info(f"π Total pattern directories: {len(pattern_dirs)}, Total reference WAV files: {total_wav_files}")
|
198 |
|
@@ -207,6 +339,9 @@ def init_reference_audio(reference_dir, output_dir):
|
|
207 |
except Exception as e:
|
208 |
logger.warning(f"β οΈ Failed to remove dummy file {dummy}: {str(e)}")
|
209 |
|
|
|
|
|
|
|
210 |
return working_dir
|
211 |
|
212 |
except Exception as e:
|
@@ -225,7 +360,9 @@ def init_reference_audio(reference_dir, output_dir):
|
|
225 |
return reference_dir
|
226 |
|
227 |
def handle_upload_reference(request, reference_dir, sample_rate):
|
228 |
-
"""Handle upload of reference audio files"""
|
|
|
|
|
229 |
try:
|
230 |
if "audio" not in request.files:
|
231 |
logger.warning("β οΈ Reference upload missing audio file")
|
@@ -295,6 +432,22 @@ def handle_upload_reference(request, reference_dir, sample_rate):
|
|
295 |
os.unlink(temp_path)
|
296 |
except:
|
297 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
except Exception as e:
|
299 |
logger.error(f"β Reference audio processing failed: {str(e)}")
|
300 |
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
|
@@ -305,7 +458,8 @@ def handle_upload_reference(request, reference_dir, sample_rate):
|
|
305 |
"message": "Reference audio uploaded successfully",
|
306 |
"reference_word": reference_word,
|
307 |
"file": filename,
|
308 |
-
"total_references": len(references)
|
|
|
309 |
})
|
310 |
|
311 |
except Exception as e:
|
@@ -314,7 +468,9 @@ def handle_upload_reference(request, reference_dir, sample_rate):
|
|
314 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
315 |
|
316 |
def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
317 |
-
"""Handle pronunciation evaluation requests with
|
|
|
|
|
318 |
request_id = f"req-{id(request)}"
|
319 |
logger.info(f"[{request_id}] π Starting pronunciation evaluation request")
|
320 |
|
@@ -329,7 +485,7 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
329 |
return jsonify({"error": "ASR model not available"}), 503
|
330 |
|
331 |
try:
|
332 |
-
#
|
333 |
if "audio" not in request.files:
|
334 |
logger.warning(f"[{request_id}] β οΈ Evaluation request missing audio file")
|
335 |
return jsonify({"error": "No audio file uploaded"}), 400
|
@@ -343,11 +499,10 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
343 |
logger.warning(f"[{request_id}] β οΈ No reference locator provided")
|
344 |
return jsonify({"error": "Reference locator is required"}), 400
|
345 |
|
346 |
-
# OPTIMIZATION
|
347 |
audio_content = audio_file.read()
|
348 |
audio_file.seek(0) # Reset file pointer after reading
|
349 |
|
350 |
-
import hashlib
|
351 |
audio_hash = hashlib.md5(audio_content).hexdigest()
|
352 |
cache_key = f"{audio_hash}_{reference_locator}_{language}"
|
353 |
|
@@ -416,120 +571,121 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
416 |
# Transcribe user audio
|
417 |
try:
|
418 |
logger.info(f"[{request_id}] π Transcribing user audio")
|
419 |
-
|
420 |
-
inputs = asr_processor(
|
421 |
-
user_waveform,
|
422 |
-
sampling_rate=sample_rate,
|
423 |
-
return_tensors="pt"
|
424 |
-
)
|
425 |
-
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
|
426 |
-
|
427 |
-
with torch.no_grad():
|
428 |
-
logits = asr_model(**inputs).logits
|
429 |
-
ids = torch.argmax(logits, dim=-1)[0]
|
430 |
-
user_transcription = asr_processor.decode(ids)
|
431 |
-
|
432 |
logger.info(f"[{request_id}] β
User transcription: '{user_transcription}'")
|
433 |
except Exception as e:
|
434 |
logger.error(f"[{request_id}] β ASR inference failed: {str(e)}")
|
435 |
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
|
436 |
|
437 |
-
#
|
438 |
-
|
439 |
-
|
440 |
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
# Randomly select 3 files for faster comparison
|
445 |
-
reference_files_sample = random.sample(reference_files, 3)
|
446 |
-
else:
|
447 |
-
reference_files_sample = reference_files
|
448 |
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
logger.info(f"[{request_id}] π Quick scan: processing {len(reference_files_sample)} reference files")
|
454 |
-
|
455 |
-
# Function to process a single reference file
|
456 |
-
def process_reference_file(ref_file):
|
457 |
-
ref_filename = os.path.basename(ref_file)
|
458 |
-
try:
|
459 |
-
# Load and resample reference audio
|
460 |
-
ref_waveform, ref_sr = torchaudio.load(ref_file)
|
461 |
-
if ref_sr != sample_rate:
|
462 |
-
ref_waveform = torchaudio.transforms.Resample(ref_sr, sample_rate)(ref_waveform)
|
463 |
-
ref_waveform = ref_waveform.squeeze().numpy()
|
464 |
-
|
465 |
-
# Transcribe reference audio
|
466 |
-
inputs = asr_processor(
|
467 |
-
ref_waveform,
|
468 |
-
sampling_rate=sample_rate,
|
469 |
-
return_tensors="pt"
|
470 |
-
)
|
471 |
-
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
|
472 |
-
|
473 |
-
with torch.no_grad():
|
474 |
-
logits = asr_model(**inputs).logits
|
475 |
-
ids = torch.argmax(logits, dim=-1)[0]
|
476 |
-
ref_transcription = asr_processor.decode(ids)
|
477 |
-
|
478 |
-
# Calculate similarity
|
479 |
similarity = calculate_similarity(user_transcription, ref_transcription)
|
480 |
-
|
481 |
logger.info(
|
482 |
f"[{request_id}] π Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
|
483 |
-
|
484 |
-
|
485 |
"reference_file": ref_filename,
|
486 |
"reference_text": ref_transcription,
|
487 |
"similarity_score": similarity
|
488 |
-
}
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
"reference_text": "Error",
|
494 |
-
"similarity_score": 0,
|
495 |
-
"error": str(e)
|
496 |
-
}
|
497 |
-
|
498 |
-
# Process the sample files in parallel
|
499 |
-
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
500 |
-
initial_results = list(executor.map(process_reference_file, reference_files_sample))
|
501 |
-
|
502 |
-
# Find the best result from the initial sample
|
503 |
-
best_score = 0
|
504 |
-
best_reference = None
|
505 |
-
best_transcription = None
|
506 |
-
|
507 |
-
for result in initial_results:
|
508 |
-
if result["similarity_score"] > best_score:
|
509 |
-
best_score = result["similarity_score"]
|
510 |
-
best_reference = result["reference_file"]
|
511 |
-
best_transcription = result["reference_text"]
|
512 |
-
|
513 |
-
# OPTIMIZATION 5: If we already found a very good match, don't process more files
|
514 |
-
all_results = initial_results.copy()
|
515 |
-
remaining_files = [f for f in reference_files if f not in reference_files_sample]
|
516 |
-
|
517 |
-
# Only process more files if our best score isn't already very good
|
518 |
-
if best_score < 80.0 and remaining_files:
|
519 |
-
logger.info(f"[{request_id}] π Score {best_score:.2f}% not high enough, checking {len(remaining_files)} more references")
|
520 |
|
521 |
-
# Process
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
523 |
-
|
524 |
-
all_results.
|
525 |
|
526 |
-
#
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
# Clean up temp files
|
534 |
try:
|
535 |
if temp_dir and os.path.exists(temp_dir):
|
@@ -537,6 +693,20 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
537 |
logger.debug(f"[{request_id}] π§Ή Cleaned up temporary directory")
|
538 |
except Exception as e:
|
539 |
logger.warning(f"[{request_id}] β οΈ Failed to clean up temp files: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
|
541 |
# Determine feedback based on score
|
542 |
is_correct = best_score >= 70.0
|
@@ -554,11 +724,8 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
554 |
|
555 |
logger.info(f"[{request_id}] π Final evaluation results: score={best_score:.2f}%, is_correct={is_correct}")
|
556 |
logger.info(f"[{request_id}] π Feedback: '{feedback}'")
|
557 |
-
logger.info(f"[{request_id}] β
Evaluation complete")
|
558 |
|
559 |
-
# Sort results by score descending
|
560 |
-
all_results.sort(key=lambda x: x["similarity_score"], reverse=True)
|
561 |
-
|
562 |
# Create response
|
563 |
response = jsonify({
|
564 |
"is_correct": is_correct,
|
@@ -570,10 +737,11 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
570 |
"details": all_results,
|
571 |
"total_references_compared": len(all_results),
|
572 |
"total_available_references": len(reference_files),
|
573 |
-
"
|
|
|
574 |
})
|
575 |
|
576 |
-
#
|
577 |
MAX_CACHE_SIZE = 50
|
578 |
EVALUATION_CACHE[cache_key] = response
|
579 |
if len(EVALUATION_CACHE) > MAX_CACHE_SIZE:
|
@@ -593,4 +761,27 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
593 |
except:
|
594 |
pass
|
595 |
|
596 |
-
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate.py - Handles evaluation and comparing tasks with reference preprocessing
|
2 |
|
3 |
import os
|
4 |
import glob
|
|
|
13 |
from flask import jsonify
|
14 |
from werkzeug.utils import secure_filename
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
16 |
+
import hashlib
|
17 |
+
import threading
|
18 |
+
import time
|
19 |
|
20 |
# Import necessary functions from translator.py
|
21 |
from translator import get_asr_model, get_asr_processor, LANGUAGE_CODES
|
|
|
23 |
# Configure logging
|
24 |
logger = logging.getLogger("speech_api")
|
25 |
|
26 |
+
# Enhanced cache structure to store preprocessed reference audio data
|
27 |
+
# Format: {reference_locator: {reference_file: {waveform, transcription, processed_at}}}
|
28 |
+
REFERENCE_CACHE = {}
|
29 |
+
|
30 |
+
# Traditional evaluation cache for quick responses to identical requests
|
31 |
EVALUATION_CACHE = {}
|
32 |
|
33 |
+
# A flag to indicate if preprocessing is complete
|
34 |
+
PREPROCESSING_COMPLETE = False
|
35 |
+
PREPROCESSING_LOCK = threading.Lock()
|
36 |
+
PREPROCESSING_THREAD = None
|
37 |
+
|
38 |
def calculate_similarity(text1, text2):
|
39 |
"""Calculate text similarity percentage."""
|
40 |
def clean_text(text):
|
|
|
117 |
|
118 |
return found_dirs
|
119 |
|
120 |
+
def transcribe_audio(waveform, sample_rate, asr_model, asr_processor):
|
121 |
+
"""Helper function to transcribe audio using the ASR model"""
|
122 |
+
inputs = asr_processor(
|
123 |
+
waveform,
|
124 |
+
sampling_rate=sample_rate,
|
125 |
+
return_tensors="pt"
|
126 |
+
)
|
127 |
+
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
|
128 |
+
|
129 |
+
with torch.no_grad():
|
130 |
+
logits = asr_model(**inputs).logits
|
131 |
+
ids = torch.argmax(logits, dim=-1)[0]
|
132 |
+
transcription = asr_processor.decode(ids)
|
133 |
+
|
134 |
+
return transcription
|
135 |
+
|
136 |
+
def preprocess_reference_file(ref_file, sample_rate, asr_model, asr_processor):
|
137 |
+
"""Preprocess a single reference file and return its transcription"""
|
138 |
+
ref_filename = os.path.basename(ref_file)
|
139 |
+
try:
|
140 |
+
# Load and resample reference audio
|
141 |
+
ref_waveform, ref_sr = torchaudio.load(ref_file)
|
142 |
+
if ref_sr != sample_rate:
|
143 |
+
ref_waveform = torchaudio.transforms.Resample(ref_sr, sample_rate)(ref_waveform)
|
144 |
+
ref_waveform = ref_waveform.squeeze().numpy()
|
145 |
+
|
146 |
+
# Transcribe reference audio
|
147 |
+
ref_transcription = transcribe_audio(ref_waveform, sample_rate, asr_model, asr_processor)
|
148 |
+
|
149 |
+
logger.debug(f"Preprocessed reference file: {ref_filename}, transcription: '{ref_transcription}'")
|
150 |
+
|
151 |
+
return {
|
152 |
+
"waveform": ref_waveform,
|
153 |
+
"transcription": ref_transcription,
|
154 |
+
"processed_at": time.time()
|
155 |
+
}
|
156 |
+
except Exception as e:
|
157 |
+
logger.error(f"β Error preprocessing {ref_filename}: {str(e)}")
|
158 |
+
return None
|
159 |
+
|
160 |
+
def preprocess_all_references(reference_dir, sample_rate=16000):
|
161 |
+
"""Preprocess all reference audio files at startup"""
|
162 |
+
global PREPROCESSING_COMPLETE, REFERENCE_CACHE
|
163 |
+
|
164 |
+
logger.info("π Starting preprocessing of all reference audio files...")
|
165 |
+
|
166 |
+
# Get ASR model and processor
|
167 |
+
asr_model = get_asr_model()
|
168 |
+
asr_processor = get_asr_processor()
|
169 |
+
|
170 |
+
if asr_model is None or asr_processor is None:
|
171 |
+
logger.error("β Cannot preprocess reference audio - ASR models not loaded")
|
172 |
+
return False
|
173 |
+
|
174 |
+
try:
|
175 |
+
pattern_dirs = [d for d in os.listdir(reference_dir)
|
176 |
+
if os.path.isdir(os.path.join(reference_dir, d))]
|
177 |
+
|
178 |
+
total_processed = 0
|
179 |
+
start_time = time.time()
|
180 |
+
|
181 |
+
# Process each reference pattern directory
|
182 |
+
for pattern in pattern_dirs:
|
183 |
+
pattern_path = os.path.join(reference_dir, pattern)
|
184 |
+
reference_files = glob.glob(os.path.join(pattern_path, "*.wav"))
|
185 |
+
reference_files = [f for f in reference_files if "dummy_reference" not in f]
|
186 |
+
|
187 |
+
if not reference_files:
|
188 |
+
continue
|
189 |
+
|
190 |
+
# Initialize cache for this pattern if needed
|
191 |
+
if pattern not in REFERENCE_CACHE:
|
192 |
+
REFERENCE_CACHE[pattern] = {}
|
193 |
+
|
194 |
+
logger.info(f"π Preprocessing {len(reference_files)} references for pattern: {pattern}")
|
195 |
+
|
196 |
+
# Determine optimal number of workers
|
197 |
+
max_workers = min(os.cpu_count() or 4, len(reference_files), 5)
|
198 |
+
|
199 |
+
# Process files in parallel
|
200 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
201 |
+
tasks = {
|
202 |
+
executor.submit(preprocess_reference_file, ref_file, sample_rate, asr_model, asr_processor):
|
203 |
+
ref_file for ref_file in reference_files
|
204 |
+
}
|
205 |
+
|
206 |
+
for future in tasks:
|
207 |
+
ref_file = tasks[future]
|
208 |
+
try:
|
209 |
+
result = future.result()
|
210 |
+
if result:
|
211 |
+
REFERENCE_CACHE[pattern][os.path.basename(ref_file)] = result
|
212 |
+
total_processed += 1
|
213 |
+
except Exception as e:
|
214 |
+
logger.error(f"β Failed to process {ref_file}: {str(e)}")
|
215 |
+
|
216 |
+
elapsed_time = time.time() - start_time
|
217 |
+
logger.info(f"β
Preprocessing complete! Processed {total_processed} reference files in {elapsed_time:.2f} seconds")
|
218 |
+
|
219 |
+
with PREPROCESSING_LOCK:
|
220 |
+
PREPROCESSING_COMPLETE = True
|
221 |
+
|
222 |
+
return True
|
223 |
+
|
224 |
+
except Exception as e:
|
225 |
+
logger.error(f"β Error during reference preprocessing: {str(e)}")
|
226 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
227 |
+
return False
|
228 |
+
|
229 |
+
def start_preprocessing_thread(reference_dir, sample_rate=16000):
|
230 |
+
"""Start preprocessing in a background thread"""
|
231 |
+
global PREPROCESSING_THREAD
|
232 |
+
|
233 |
+
def preprocessing_worker():
|
234 |
+
preprocess_all_references(reference_dir, sample_rate)
|
235 |
+
|
236 |
+
PREPROCESSING_THREAD = threading.Thread(target=preprocessing_worker)
|
237 |
+
PREPROCESSING_THREAD.daemon = True # Allow thread to exit when main thread exits
|
238 |
+
PREPROCESSING_THREAD.start()
|
239 |
+
|
240 |
+
logger.info("π§΅ Started reference audio preprocessing in background thread")
|
241 |
+
|
242 |
def init_reference_audio(reference_dir, output_dir):
|
243 |
+
"""Initialize reference audio directories and start preprocessing"""
|
244 |
try:
|
245 |
# Create the output directory first
|
246 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
313 |
except Exception as e:
|
314 |
logger.warning(f"β οΈ Failed to copy reference files: {str(e)}")
|
315 |
|
316 |
+
# Log the final contents, excluding dummy files
|
317 |
pattern_dirs = [d for d in os.listdir(working_dir)
|
318 |
if os.path.isdir(os.path.join(working_dir, d))]
|
319 |
|
|
|
325 |
# Count only non-dummy files
|
326 |
valid_files = [f for f in wav_files if "dummy_reference" not in f]
|
327 |
total_wav_files += len(valid_files)
|
|
|
|
|
328 |
|
329 |
logger.info(f"π Total pattern directories: {len(pattern_dirs)}, Total reference WAV files: {total_wav_files}")
|
330 |
|
|
|
339 |
except Exception as e:
|
340 |
logger.warning(f"β οΈ Failed to remove dummy file {dummy}: {str(e)}")
|
341 |
|
342 |
+
# Start preprocessing references in background
|
343 |
+
start_preprocessing_thread(working_dir)
|
344 |
+
|
345 |
return working_dir
|
346 |
|
347 |
except Exception as e:
|
|
|
360 |
return reference_dir
|
361 |
|
362 |
def handle_upload_reference(request, reference_dir, sample_rate):
|
363 |
+
"""Handle upload of reference audio files and preprocess immediately"""
|
364 |
+
global REFERENCE_CACHE
|
365 |
+
|
366 |
try:
|
367 |
if "audio" not in request.files:
|
368 |
logger.warning("β οΈ Reference upload missing audio file")
|
|
|
432 |
os.unlink(temp_path)
|
433 |
except:
|
434 |
pass
|
435 |
+
|
436 |
+
# Immediately preprocess this new reference file and add to cache
|
437 |
+
asr_model = get_asr_model()
|
438 |
+
asr_processor = get_asr_processor()
|
439 |
+
|
440 |
+
if asr_model and asr_processor:
|
441 |
+
# Initialize cache for this pattern if needed
|
442 |
+
if reference_word not in REFERENCE_CACHE:
|
443 |
+
REFERENCE_CACHE[reference_word] = {}
|
444 |
+
|
445 |
+
# Preprocess and add to cache
|
446 |
+
result = preprocess_reference_file(file_path, sample_rate, asr_model, asr_processor)
|
447 |
+
if result:
|
448 |
+
REFERENCE_CACHE[reference_word][filename] = result
|
449 |
+
logger.info(f"β
New reference audio preprocessed and added to cache: {filename}")
|
450 |
+
|
451 |
except Exception as e:
|
452 |
logger.error(f"β Reference audio processing failed: {str(e)}")
|
453 |
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
|
|
|
458 |
"message": "Reference audio uploaded successfully",
|
459 |
"reference_word": reference_word,
|
460 |
"file": filename,
|
461 |
+
"total_references": len(references),
|
462 |
+
"preprocessed": True
|
463 |
})
|
464 |
|
465 |
except Exception as e:
|
|
|
468 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
469 |
|
470 |
def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
471 |
+
"""Handle pronunciation evaluation requests with preprocessing optimization"""
|
472 |
+
global REFERENCE_CACHE, PREPROCESSING_COMPLETE
|
473 |
+
|
474 |
request_id = f"req-{id(request)}"
|
475 |
logger.info(f"[{request_id}] π Starting pronunciation evaluation request")
|
476 |
|
|
|
485 |
return jsonify({"error": "ASR model not available"}), 503
|
486 |
|
487 |
try:
|
488 |
+
# Check for basic request requirements
|
489 |
if "audio" not in request.files:
|
490 |
logger.warning(f"[{request_id}] β οΈ Evaluation request missing audio file")
|
491 |
return jsonify({"error": "No audio file uploaded"}), 400
|
|
|
499 |
logger.warning(f"[{request_id}] β οΈ No reference locator provided")
|
500 |
return jsonify({"error": "Reference locator is required"}), 400
|
501 |
|
502 |
+
# OPTIMIZATION: Simple caching based on audio content hash + reference_locator
|
503 |
audio_content = audio_file.read()
|
504 |
audio_file.seek(0) # Reset file pointer after reading
|
505 |
|
|
|
506 |
audio_hash = hashlib.md5(audio_content).hexdigest()
|
507 |
cache_key = f"{audio_hash}_{reference_locator}_{language}"
|
508 |
|
|
|
571 |
# Transcribe user audio
|
572 |
try:
|
573 |
logger.info(f"[{request_id}] π Transcribing user audio")
|
574 |
+
user_transcription = transcribe_audio(user_waveform, sample_rate, asr_model, asr_processor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
logger.info(f"[{request_id}] β
User transcription: '{user_transcription}'")
|
576 |
except Exception as e:
|
577 |
logger.error(f"[{request_id}] β ASR inference failed: {str(e)}")
|
578 |
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
|
579 |
|
580 |
+
# Check if we have preprocessed data for this reference locator
|
581 |
+
using_preprocessed = False
|
582 |
+
all_results = []
|
583 |
|
584 |
+
if reference_locator in REFERENCE_CACHE and REFERENCE_CACHE[reference_locator]:
|
585 |
+
using_preprocessed = True
|
586 |
+
logger.info(f"[{request_id}] π Using preprocessed reference data for {reference_locator}")
|
|
|
|
|
|
|
|
|
587 |
|
588 |
+
# Compare with all cached references
|
589 |
+
for ref_filename, ref_data in REFERENCE_CACHE[reference_locator].items():
|
590 |
+
ref_transcription = ref_data["transcription"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
591 |
similarity = calculate_similarity(user_transcription, ref_transcription)
|
592 |
+
|
593 |
logger.info(
|
594 |
f"[{request_id}] π Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
|
595 |
+
|
596 |
+
all_results.append({
|
597 |
"reference_file": ref_filename,
|
598 |
"reference_text": ref_transcription,
|
599 |
"similarity_score": similarity
|
600 |
+
})
|
601 |
+
|
602 |
+
else:
|
603 |
+
# If not preprocessed yet, do traditional processing
|
604 |
+
logger.info(f"[{request_id}] β οΈ No preprocessed data available for {reference_locator}, processing on demand")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
|
606 |
+
# Process files in parallel with ThreadPoolExecutor
|
607 |
+
import random
|
608 |
+
import multiprocessing
|
609 |
+
|
610 |
+
# Determine optimal number of workers based on CPU count (but keep it small)
|
611 |
+
max_workers = min(multiprocessing.cpu_count(), len(reference_files), 3)
|
612 |
+
|
613 |
+
# Function to process a single reference file
|
614 |
+
def process_reference_file(ref_file):
|
615 |
+
ref_filename = os.path.basename(ref_file)
|
616 |
+
try:
|
617 |
+
# Load and resample reference audio
|
618 |
+
ref_waveform, ref_sr = torchaudio.load(ref_file)
|
619 |
+
if ref_sr != sample_rate:
|
620 |
+
ref_waveform = torchaudio.transforms.Resample(ref_sr, sample_rate)(ref_waveform)
|
621 |
+
ref_waveform = ref_waveform.squeeze().numpy()
|
622 |
+
|
623 |
+
# Transcribe reference audio
|
624 |
+
ref_transcription = transcribe_audio(ref_waveform, sample_rate, asr_model, asr_processor)
|
625 |
+
|
626 |
+
# Add to cache for future use
|
627 |
+
if reference_locator not in REFERENCE_CACHE:
|
628 |
+
REFERENCE_CACHE[reference_locator] = {}
|
629 |
+
|
630 |
+
REFERENCE_CACHE[reference_locator][ref_filename] = {
|
631 |
+
"waveform": ref_waveform,
|
632 |
+
"transcription": ref_transcription,
|
633 |
+
"processed_at": time.time()
|
634 |
+
}
|
635 |
+
|
636 |
+
# Calculate similarity
|
637 |
+
similarity = calculate_similarity(user_transcription, ref_transcription)
|
638 |
+
|
639 |
+
logger.info(
|
640 |
+
f"[{request_id}] π Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
|
641 |
+
|
642 |
+
return {
|
643 |
+
"reference_file": ref_filename,
|
644 |
+
"reference_text": ref_transcription,
|
645 |
+
"similarity_score": similarity
|
646 |
+
}
|
647 |
+
except Exception as e:
|
648 |
+
logger.error(f"[{request_id}] β Error processing {ref_filename}: {str(e)}")
|
649 |
+
return {
|
650 |
+
"reference_file": ref_filename,
|
651 |
+
"reference_text": "Error",
|
652 |
+
"similarity_score": 0,
|
653 |
+
"error": str(e)
|
654 |
+
}
|
655 |
+
|
656 |
+
# If we have many files, select a smaller sample for initial quick evaluation
|
657 |
+
if len(reference_files) > 3 and not using_preprocessed:
|
658 |
+
reference_files_sample = random.sample(reference_files, 3)
|
659 |
+
else:
|
660 |
+
reference_files_sample = reference_files
|
661 |
+
|
662 |
+
logger.info(f"[{request_id}] π Processing {len(reference_files_sample)} reference files")
|
663 |
+
|
664 |
+
# Process the files in parallel
|
665 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
666 |
+
initial_results = list(executor.map(process_reference_file, reference_files_sample))
|
667 |
+
all_results = initial_results.copy()
|
668 |
|
669 |
+
# If we didn't process all files and didn't find a good match, process more
|
670 |
+
if len(reference_files_sample) < len(reference_files) and not using_preprocessed:
|
671 |
+
# Find the best result so far
|
672 |
+
best_score = 0
|
673 |
+
for result in all_results:
|
674 |
+
if result["similarity_score"] > best_score:
|
675 |
+
best_score = result["similarity_score"]
|
676 |
+
|
677 |
+
# Only process more files if our best score isn't already very good
|
678 |
+
if best_score < 80.0:
|
679 |
+
remaining_files = [f for f in reference_files if f not in reference_files_sample]
|
680 |
+
logger.info(f"[{request_id}] π Score {best_score:.2f}% not high enough, checking {len(remaining_files)} more references")
|
681 |
+
|
682 |
+
# Limit how many additional files we process
|
683 |
+
additional_files = remaining_files[:5] # Process max 5 more
|
684 |
+
|
685 |
+
# Process remaining files
|
686 |
+
additional_results = list(executor.map(process_reference_file, additional_files))
|
687 |
+
all_results.extend(additional_results)
|
688 |
+
|
689 |
# Clean up temp files
|
690 |
try:
|
691 |
if temp_dir and os.path.exists(temp_dir):
|
|
|
693 |
logger.debug(f"[{request_id}] π§Ή Cleaned up temporary directory")
|
694 |
except Exception as e:
|
695 |
logger.warning(f"[{request_id}] β οΈ Failed to clean up temp files: {str(e)}")
|
696 |
+
|
697 |
+
# Find the best result
|
698 |
+
best_score = 0
|
699 |
+
best_reference = None
|
700 |
+
best_transcription = None
|
701 |
+
|
702 |
+
# Sort results by score descending
|
703 |
+
all_results.sort(key=lambda x: x["similarity_score"], reverse=True)
|
704 |
+
|
705 |
+
if all_results:
|
706 |
+
best_result = all_results[0]
|
707 |
+
best_score = best_result["similarity_score"]
|
708 |
+
best_reference = best_result["reference_file"]
|
709 |
+
best_transcription = best_result["reference_text"]
|
710 |
|
711 |
# Determine feedback based on score
|
712 |
is_correct = best_score >= 70.0
|
|
|
724 |
|
725 |
logger.info(f"[{request_id}] π Final evaluation results: score={best_score:.2f}%, is_correct={is_correct}")
|
726 |
logger.info(f"[{request_id}] π Feedback: '{feedback}'")
|
727 |
+
logger.info(f"[{request_id}] β
Evaluation complete using {'preprocessed' if using_preprocessed else 'on-demand'} reference data")
|
728 |
|
|
|
|
|
|
|
729 |
# Create response
|
730 |
response = jsonify({
|
731 |
"is_correct": is_correct,
|
|
|
737 |
"details": all_results,
|
738 |
"total_references_compared": len(all_results),
|
739 |
"total_available_references": len(reference_files),
|
740 |
+
"used_preprocessed_data": using_preprocessed,
|
741 |
+
"preprocessing_complete": PREPROCESSING_COMPLETE
|
742 |
})
|
743 |
|
744 |
+
# Cache the result for future identical requests
|
745 |
MAX_CACHE_SIZE = 50
|
746 |
EVALUATION_CACHE[cache_key] = response
|
747 |
if len(EVALUATION_CACHE) > MAX_CACHE_SIZE:
|
|
|
761 |
except:
|
762 |
pass
|
763 |
|
764 |
+
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
765 |
+
|
766 |
+
# Add a new function to get preprocessing status
|
767 |
+
def get_preprocessing_status():
|
768 |
+
"""Get the current status of reference audio preprocessing"""
|
769 |
+
global PREPROCESSING_COMPLETE, REFERENCE_CACHE
|
770 |
+
|
771 |
+
with PREPROCESSING_LOCK:
|
772 |
+
is_complete = PREPROCESSING_COMPLETE
|
773 |
+
|
774 |
+
# Count total preprocessed references
|
775 |
+
preprocessed_count = 0
|
776 |
+
for pattern, files in REFERENCE_CACHE.items():
|
777 |
+
preprocessed_count += len(files)
|
778 |
+
|
779 |
+
# Check if preprocessing thread is alive
|
780 |
+
thread_running = PREPROCESSING_THREAD is not None and PREPROCESSING_THREAD.is_alive()
|
781 |
+
|
782 |
+
return {
|
783 |
+
"complete": is_complete,
|
784 |
+
"preprocessed_files": preprocessed_count,
|
785 |
+
"patterns_cached": len(REFERENCE_CACHE),
|
786 |
+
"thread_running": thread_running
|
787 |
+
}
|