Kapamtalk / evaluate.py
Coco-18's picture
Update evaluate.py
a9978be verified
raw
history blame
28.4 kB
# evaluate.py - Handles evaluation and comparing tasks
import os
import glob
import logging
import traceback
import tempfile
import shutil
from difflib import SequenceMatcher
import torch
import torchaudio
from pydub import AudioSegment
from flask import jsonify
from werkzeug.utils import secure_filename
from concurrent.futures import ThreadPoolExecutor
# Import necessary functions from translator.py
from translator import get_asr_model, get_asr_processor, LANGUAGE_CODES
# Configure logging
logger = logging.getLogger("speech_api")
# Initialize cache at module level instead
EVALUATION_CACHE = {}
def calculate_similarity(text1, text2):
"""Calculate text similarity percentage."""
def clean_text(text):
return text.lower()
clean1 = clean_text(text1)
clean2 = clean_text(text2)
matcher = SequenceMatcher(None, clean1, clean2)
return matcher.ratio() * 100
def setup_reference_patterns(reference_dir, sample_rate=16000):
"""Create standard reference pattern directories without dummy files"""
reference_patterns = [
"mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
"pagdulapan_da_ka", "kaluguran_da_ka", "dakal_a_salamat", "panapaya_mu_ku",
"wa", "ali", "tuknang", "lagwa", "galo", "buri_ke_ini", "tara_na",
"nokarin_ka_ibat", "nokarin_ka_munta", "atiu_na_ku", "nanung_panayan_mu",
"mako_na_ka", "muli_ta_na", "nanu_ing_pengan_mu", "mekeni", "mengan_na_ka",
"munta_ka_karin", "magkanu_ini", "mimingat_ka", "mangan_ta_na", "lakwan_da_ka",
"nanu_maliari_kung_daptan_keka", "pilan_na_ka_banwa", "saliwan_ke_ini",
"makananu_munta_king", "adwa", "anam", "apat", "apulu", "atlu", "dalan", "libu", "lima",
"metung", "pitu", "siyam", "walu", "masala", "madalumdum", "maragul", "marimla", "malagu", "marok", "mababa", "malapit", "matuling", "maputi",
"arung", "asbuk", "balugbug", "bitis", "buntuk", "butit", "gamat", "kuku", "salu", "tud",
"pisan", "dara", "achi", "apu", "ima", "tatang", "pengari", "koya", "kapatad", "wali",
"pasbul", "awang", "dagis", "bale", "ulas", "sambra", "sulu", "pitudturan", "luklukan", "ulnan"
]
created_dirs = 0
for pattern in reference_patterns:
pattern_dir = os.path.join(reference_dir, pattern)
if not os.path.exists(pattern_dir):
try:
os.makedirs(pattern_dir, exist_ok=True)
logger.info(f"πŸ“ Created reference pattern directory: {pattern_dir}")
created_dirs += 1
except Exception as e:
logger.error(f"❌ Failed to create reference pattern directory {pattern_dir}: {str(e)}")
continue
return created_dirs, 0 # Return 0 created files since we're not creating dummy files anymore
def search_reference_directories():
"""Search for possible reference directories in various locations"""
possible_locations = [
"./reference_audios",
"../reference_audios",
"/app/reference_audios",
"/tmp/reference_audios",
os.path.join(os.path.dirname(os.path.abspath(__file__)), "reference_audios")
]
found_dirs = []
for location in possible_locations:
if os.path.exists(location) and os.path.isdir(location):
access_info = {
"readable": os.access(location, os.R_OK),
"writable": os.access(location, os.W_OK),
"executable": os.access(location, os.X_OK)
}
# Count pattern directories
pattern_dirs = [d for d in os.listdir(location)
if os.path.isdir(os.path.join(location, d))]
# Count total wav files
wav_count = 0
for pattern in pattern_dirs:
pattern_path = os.path.join(location, pattern)
wav_count += len(glob.glob(os.path.join(pattern_path, "*.wav")))
found_dirs.append({
"path": location,
"access": access_info,
"pattern_dirs": len(pattern_dirs),
"wav_files": wav_count
})
return found_dirs
def init_reference_audio(reference_dir, output_dir):
"""Initialize reference audio directories and return the working directory path"""
try:
# Create the output directory first
os.makedirs(output_dir, exist_ok=True)
logger.info(f"πŸ“ Created output directory: {output_dir}")
# Search for existing reference directories
found_dirs = search_reference_directories()
for directory in found_dirs:
logger.info(f"πŸ” Found reference directory: {directory['path']} "
f"(patterns: {directory['pattern_dirs']}, wav files: {directory['wav_files']})")
# First, try to use the provided reference_dir
working_dir = reference_dir
# Check if reference_dir is accessible and writable
if not os.path.exists(reference_dir) or not os.access(reference_dir, os.W_OK):
logger.warning(f"⚠️ Provided reference directory {reference_dir} is not writable")
# Try to use a found directory that has patterns and is writable
for directory in found_dirs:
if directory['access']['writable'] and directory['pattern_dirs'] > 0:
working_dir = directory['path']
logger.info(f"βœ… Using found reference directory: {working_dir}")
break
else:
# If no suitable directory found, create one in /tmp
working_dir = os.path.join('/tmp', 'reference_audios')
logger.warning(f"⚠️ Using fallback reference directory in /tmp: {working_dir}")
# Ensure the working directory exists
os.makedirs(working_dir, exist_ok=True)
logger.info(f"πŸ“ Using reference directory: {working_dir}")
# Set up reference pattern directories WITHOUT dummy files
dirs_created, _ = setup_reference_patterns(working_dir)
logger.info(f"πŸ“Š Created {dirs_created} directories")
# Try to copy reference files from other found directories to working directory if needed
if len(found_dirs) > 1:
# Try to find a directory with existing WAV files
for directory in found_dirs:
if directory['path'] != working_dir and directory['wav_files'] > 0:
try:
source_dir = directory['path']
logger.info(f"πŸ”„ Copying reference files from {source_dir} to {working_dir}")
# Copy pattern directories that have WAV files
# But skip any dummy reference files
for item in os.listdir(source_dir):
src_path = os.path.join(source_dir, item)
if os.path.isdir(src_path):
wav_files = glob.glob(os.path.join(src_path, "*.wav"))
# Filter out dummy references
wav_files = [f for f in wav_files if "dummy_reference" not in f]
if wav_files: # Only proceed if there are valid files
dst_path = os.path.join(working_dir, item)
os.makedirs(dst_path, exist_ok=True)
# Copy each valid WAV file individually
for wav_file in wav_files:
wav_name = os.path.basename(wav_file)
if "dummy_reference" not in wav_name: # Extra check
dst_file = os.path.join(dst_path, wav_name)
if not os.path.exists(dst_file):
shutil.copy2(wav_file, dst_file)
logger.info(f"πŸ“„ Copied {wav_name} to {dst_path}")
break
except Exception as e:
logger.warning(f"⚠️ Failed to copy reference files: {str(e)}")
# Log the final contents, excluding dummy files - MODIFIED HERE
pattern_dirs = [d for d in os.listdir(working_dir)
if os.path.isdir(os.path.join(working_dir, d))]
# Count total files without logging each directory
total_wav_files = 0
for pattern in pattern_dirs:
pattern_path = os.path.join(working_dir, pattern)
wav_files = glob.glob(os.path.join(pattern_path, "*.wav"))
# Count only non-dummy files
valid_files = [f for f in wav_files if "dummy_reference" not in f]
total_wav_files += len(valid_files)
# Remove the individual directory logging
# logger.info(f" - {pattern}: {len(valid_files)} valid WAV files")
logger.info(f"πŸ“Š Total pattern directories: {len(pattern_dirs)}, Total reference WAV files: {total_wav_files}")
# Check for and remove any dummy files
for pattern in pattern_dirs:
pattern_path = os.path.join(working_dir, pattern)
dummy_files = glob.glob(os.path.join(pattern_path, "dummy_reference.wav"))
for dummy in dummy_files:
try:
os.remove(dummy)
logger.info(f"πŸ—‘οΈ Removed dummy file: {dummy}")
except Exception as e:
logger.warning(f"⚠️ Failed to remove dummy file {dummy}: {str(e)}")
return working_dir
except Exception as e:
logger.error(f"❌ Failed to set up reference audio directory: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
# As a last resort, try to use /tmp but without dummy files
fallback_dir = os.path.join('/tmp', 'reference_audios')
try:
os.makedirs(fallback_dir, exist_ok=True)
setup_reference_patterns(fallback_dir) # This now doesn't create dummy files
logger.warning(f"⚠️ Using emergency fallback directory: {fallback_dir}")
return fallback_dir
except:
logger.critical("πŸ’₯ CRITICAL: Failed to create even a fallback directory")
return reference_dir
def handle_upload_reference(request, reference_dir, sample_rate):
"""Handle upload of reference audio files"""
try:
if "audio" not in request.files:
logger.warning("⚠️ Reference upload missing audio file")
return jsonify({"error": "No audio file uploaded"}), 400
reference_word = request.form.get("reference_word", "").strip()
if not reference_word:
logger.warning("⚠️ Reference upload missing reference word")
return jsonify({"error": "No reference word provided"}), 400
# Validate reference word
reference_patterns = [
"mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
"pagdulapan_da_ka", "kaluguran_da_ka", "dakal_a_salamat", "panapaya_mu_ku",
"wa", "ali", "tuknang", "lagwa", "galo", "buri_ke_ini", "tara_na",
"nokarin_ka_ibat", "nokarin_ka_munta", "atiu_na_ku", "nanung_panayan_mu",
"mako_na_ka", "muli_ta_na", "nanu_ing_pengan_mu", "mekeni", "mengan_na_ka",
"munta_ka_karin", "magkanu_ini", "mimingat_ka", "mangan_ta_na", "lakwan_da_ka",
"nanu_maliari_kung_daptan_keka", "pilan_na_ka_banwa", "saliwan_ke_ini",
"makananu_munta_king", "adwa", "anam", "apat", "apulu", "atlu", "dalan", "libu", "lima",
"metung", "pitu", "siyam", "walu", "masala", "madalumdum", "maragul", "marimla", "malagu", "marok", "mababa", "malapit", "matuling", "maputi",
"arung", "asbuk", "balugbug", "bitis", "buntuk", "butit", "gamat", "kuku", "salu", "tud",
"pisan", "dara", "achi", "apu", "ima", "tatang", "pengari", "koya", "kapatad", "wali",
"pasbul", "awang", "dagis", "bale", "ulas", "sambra", "sulu", "pitudturan", "luklukan", "ulnan"
]
if reference_word not in reference_patterns:
logger.warning(f"⚠️ Invalid reference word: {reference_word}")
return jsonify({"error": f"Invalid reference word. Available: {reference_patterns}"}), 400
# Make sure we have a writable reference directory
if not os.path.exists(reference_dir):
reference_dir = os.path.join('/tmp', 'reference_audios')
os.makedirs(reference_dir, exist_ok=True)
logger.warning(f"⚠️ Using alternate reference directory for upload: {reference_dir}")
# Create directory for reference pattern if it doesn't exist
pattern_dir = os.path.join(reference_dir, reference_word)
os.makedirs(pattern_dir, exist_ok=True)
# Save the reference audio file
audio_file = request.files["audio"]
filename = secure_filename(audio_file.filename)
# Ensure filename has .wav extension
if not filename.lower().endswith('.wav'):
base_name = os.path.splitext(filename)[0]
filename = f"{base_name}.wav"
file_path = os.path.join(pattern_dir, filename)
# Create a temporary file first, then convert to WAV
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
audio_file.save(temp_file.name)
temp_path = temp_file.name
try:
# Process the audio file
audio = AudioSegment.from_file(temp_path)
audio = audio.set_frame_rate(sample_rate).set_channels(1)
audio.export(file_path, format="wav")
logger.info(f"βœ… Reference audio saved successfully for {reference_word}: {file_path}")
# Clean up temp file
try:
os.unlink(temp_path)
except:
pass
except Exception as e:
logger.error(f"❌ Reference audio processing failed: {str(e)}")
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
# Count how many references we have now
references = glob.glob(os.path.join(pattern_dir, "*.wav"))
return jsonify({
"message": "Reference audio uploaded successfully",
"reference_word": reference_word,
"file": filename,
"total_references": len(references)
})
except Exception as e:
logger.error(f"❌ Unhandled exception in reference upload: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
"""Handle pronunciation evaluation requests with speed optimizations"""
request_id = f"req-{id(request)}"
logger.info(f"[{request_id}] πŸ†• Starting pronunciation evaluation request")
temp_dir = None
# Get the ASR model and processor using the getter functions
asr_model = get_asr_model()
asr_processor = get_asr_processor()
if asr_model is None or asr_processor is None:
logger.error(f"[{request_id}] ❌ Evaluation endpoint called but ASR models aren't loaded")
return jsonify({"error": "ASR model not available"}), 503
try:
# OPTIMIZATION 1: Check cache first for identical audio
if "audio" not in request.files:
logger.warning(f"[{request_id}] ⚠️ Evaluation request missing audio file")
return jsonify({"error": "No audio file uploaded"}), 400
audio_file = request.files["audio"]
reference_locator = request.form.get("reference_locator", "").strip()
language = request.form.get("language", "kapampangan").lower()
# Validate reference locator
if not reference_locator:
logger.warning(f"[{request_id}] ⚠️ No reference locator provided")
return jsonify({"error": "Reference locator is required"}), 400
# OPTIMIZATION 2: Simple caching based on audio content hash + reference_locator
audio_content = audio_file.read()
audio_file.seek(0) # Reset file pointer after reading
import hashlib
audio_hash = hashlib.md5(audio_content).hexdigest()
cache_key = f"{audio_hash}_{reference_locator}_{language}"
# Check in-memory cache using the module-level cache
if cache_key in EVALUATION_CACHE:
logger.info(f"[{request_id}] βœ… Using cached evaluation result")
return EVALUATION_CACHE[cache_key]
# Construct full reference directory path
reference_dir_path = os.path.join(reference_dir, reference_locator)
logger.info(f"[{request_id}] πŸ“ Reference directory path: {reference_dir_path}")
# Make sure the reference directory exists
if not os.path.exists(reference_dir_path):
try:
os.makedirs(reference_dir_path, exist_ok=True)
logger.warning(f"[{request_id}] ⚠️ Created missing reference directory: {reference_dir_path}")
except Exception as e:
logger.error(f"[{request_id}] ❌ Failed to create reference directory: {str(e)}")
return jsonify({"error": f"Reference audio directory not found: {reference_locator}"}), 404
# Check for reference files
reference_files = glob.glob(os.path.join(reference_dir_path, "*.wav"))
# Filter out any dummy reference files
reference_files = [f for f in reference_files if "dummy_reference" not in f]
logger.info(f"[{request_id}] πŸ“ Found {len(reference_files)} valid reference files")
# If no reference files exist, return a more detailed error message
if not reference_files:
logger.warning(f"[{request_id}] ⚠️ No valid reference audio files found in {reference_dir_path}")
return jsonify({
"error": f"No reference audio found for {reference_locator}",
"message": "Please upload a reference audio file before evaluation.",
"status": "MISSING_REFERENCE"
}), 404
lang_code = LANGUAGE_CODES.get(language, language)
logger.info(f"[{request_id}] πŸ”„ Evaluating pronunciation for reference: {reference_locator}")
# Create a request-specific temp directory to avoid conflicts
temp_dir = os.path.join(output_dir, f"temp_{request_id}")
os.makedirs(temp_dir, exist_ok=True)
# Process user audio
user_audio_path = os.path.join(temp_dir, "user_audio_input.wav")
with open(user_audio_path, 'wb') as f:
f.write(audio_content) # Use the content we already read
try:
logger.info(f"[{request_id}] πŸ”„ Processing user audio file")
audio = AudioSegment.from_file(user_audio_path)
audio = audio.set_frame_rate(sample_rate).set_channels(1)
processed_path = os.path.join(temp_dir, "processed_user_audio.wav")
audio.export(processed_path, format="wav")
user_waveform, sr = torchaudio.load(processed_path)
user_waveform = user_waveform.squeeze().numpy()
logger.info(f"[{request_id}] βœ… User audio processed: {sr}Hz, length: {len(user_waveform)} samples")
user_audio_path = processed_path
except Exception as e:
logger.error(f"[{request_id}] ❌ Audio processing failed: {str(e)}")
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
# Transcribe user audio
try:
logger.info(f"[{request_id}] πŸ”„ Transcribing user audio")
# Remove language parameter if causing warnings
inputs = asr_processor(
user_waveform,
sampling_rate=sample_rate,
return_tensors="pt"
)
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
with torch.no_grad():
logits = asr_model(**inputs).logits
ids = torch.argmax(logits, dim=-1)[0]
user_transcription = asr_processor.decode(ids)
logger.info(f"[{request_id}] βœ… User transcription: '{user_transcription}'")
except Exception as e:
logger.error(f"[{request_id}] ❌ ASR inference failed: {str(e)}")
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
# OPTIMIZATION 3: Use a smaller sample of reference files
import multiprocessing
import random
# OPTIMIZATION 4: Limit to just a few files for initial comparison
# If we have many reference files, randomly sample some for quick evaluation
if len(reference_files) > 3:
# Randomly select 3 files for faster comparison
reference_files_sample = random.sample(reference_files, 3)
else:
reference_files_sample = reference_files
# Determine optimal number of workers based on CPU count (but keep it small)
max_workers = min(multiprocessing.cpu_count(), len(reference_files_sample), 3)
initial_results = []
logger.info(f"[{request_id}] πŸ”„ Quick scan: processing {len(reference_files_sample)} reference files")
# Function to process a single reference file
def process_reference_file(ref_file):
ref_filename = os.path.basename(ref_file)
try:
# Load and resample reference audio
ref_waveform, ref_sr = torchaudio.load(ref_file)
if ref_sr != sample_rate:
ref_waveform = torchaudio.transforms.Resample(ref_sr, sample_rate)(ref_waveform)
ref_waveform = ref_waveform.squeeze().numpy()
# Transcribe reference audio
inputs = asr_processor(
ref_waveform,
sampling_rate=sample_rate,
return_tensors="pt"
)
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
with torch.no_grad():
logits = asr_model(**inputs).logits
ids = torch.argmax(logits, dim=-1)[0]
ref_transcription = asr_processor.decode(ids)
# Calculate similarity
similarity = calculate_similarity(user_transcription, ref_transcription)
logger.info(
f"[{request_id}] πŸ“Š Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
return {
"reference_file": ref_filename,
"reference_text": ref_transcription,
"similarity_score": similarity
}
except Exception as e:
logger.error(f"[{request_id}] ❌ Error processing {ref_filename}: {str(e)}")
return {
"reference_file": ref_filename,
"reference_text": "Error",
"similarity_score": 0,
"error": str(e)
}
# Process the sample files in parallel
with ThreadPoolExecutor(max_workers=max_workers) as executor:
initial_results = list(executor.map(process_reference_file, reference_files_sample))
# Find the best result from the initial sample
best_score = 0
best_reference = None
best_transcription = None
for result in initial_results:
if result["similarity_score"] > best_score:
best_score = result["similarity_score"]
best_reference = result["reference_file"]
best_transcription = result["reference_text"]
# OPTIMIZATION 5: If we already found a very good match, don't process more files
all_results = initial_results.copy()
remaining_files = [f for f in reference_files if f not in reference_files_sample]
# Only process more files if our best score isn't already very good
if best_score < 80.0 and remaining_files:
logger.info(f"[{request_id}] πŸ”„ Score {best_score:.2f}% not high enough, checking {len(remaining_files)} more references")
# Process remaining files
with ThreadPoolExecutor(max_workers=max_workers) as executor:
additional_results = list(executor.map(process_reference_file, remaining_files[:5])) # Process max 5 more
all_results.extend(additional_results)
# Update best result if we found a better one
for result in additional_results:
if result["similarity_score"] > best_score:
best_score = result["similarity_score"]
best_reference = result["reference_file"]
best_transcription = result["reference_text"]
# Clean up temp files
try:
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
logger.debug(f"[{request_id}] 🧹 Cleaned up temporary directory")
except Exception as e:
logger.warning(f"[{request_id}] ⚠️ Failed to clean up temp files: {str(e)}")
# Determine feedback based on score
is_correct = best_score >= 70.0
if best_score >= 90.0:
feedback = "Perfect pronunciation! Excellent job!"
elif best_score >= 80.0:
feedback = "Great pronunciation! Your accent is very good."
elif best_score >= 70.0:
feedback = "Good pronunciation. Keep practicing!"
elif best_score >= 50.0:
feedback = "Fair attempt. Try focusing on the syllables that differ from the sample."
else:
feedback = "Try again. Listen carefully to the sample pronunciation."
logger.info(f"[{request_id}] πŸ“Š Final evaluation results: score={best_score:.2f}%, is_correct={is_correct}")
logger.info(f"[{request_id}] πŸ“ Feedback: '{feedback}'")
logger.info(f"[{request_id}] βœ… Evaluation complete")
# Sort results by score descending
all_results.sort(key=lambda x: x["similarity_score"], reverse=True)
# Create response
response = jsonify({
"is_correct": is_correct,
"score": best_score,
"feedback": feedback,
"user_transcription": user_transcription,
"best_reference_transcription": best_transcription,
"reference_locator": reference_locator,
"details": all_results,
"total_references_compared": len(all_results),
"total_available_references": len(reference_files),
"quick_evaluation": True
})
# OPTIMIZATION 6: Cache the result for future requests using module-level cache
MAX_CACHE_SIZE = 50
EVALUATION_CACHE[cache_key] = response
if len(EVALUATION_CACHE) > MAX_CACHE_SIZE:
# Remove oldest entry (simplified approach)
EVALUATION_CACHE.pop(next(iter(EVALUATION_CACHE)))
return response
except Exception as e:
logger.error(f"[{request_id}] ❌ Unhandled exception in evaluation endpoint: {str(e)}")
logger.debug(f"[{request_id}] Stack trace: {traceback.format_exc()}")
# Clean up on error
try:
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
except:
pass
return jsonify({"error": f"Internal server error: {str(e)}"}), 500