File size: 24,945 Bytes
d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 d39ccee f083352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
# translator.py - Handles ASR, TTS, and translation tasks (OPTIMIZED)
import os
import sys
import logging
import traceback
import torch
import torchaudio
import tempfile
import soundfile as sf
from pydub import AudioSegment
from flask import jsonify
from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
from transformers import MarianMTModel, MarianTokenizer
import concurrent.futures
import functools
import threading
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
# Configure logging
logger = logging.getLogger("speech_api")
# Global variables to store models and processors
asr_model = None
asr_processor = None
tts_models = {}
tts_processors = {}
translation_models = {}
translation_tokenizers = {}
# Caching dictionaries
asr_cache = {}
tts_cache = {}
translation_cache = {}
# Mutex locks for thread safety
asr_lock = threading.Lock()
tts_lock = threading.Lock()
translation_lock = threading.Lock()
# Language-specific configurations
LANGUAGE_CODES = {
"kapampangan": "pam",
"filipino": "fil",
"english": "eng",
"tagalog": "tgl",
}
# TTS Models (Kapampangan, Tagalog, English)
TTS_MODELS = {
"kapampangan": "facebook/mms-tts-pam",
"tagalog": "facebook/mms-tts-tgl",
"english": "facebook/mms-tts-eng"
}
# Translation Models
TRANSLATION_MODELS = {
"pam-eng": "Coco-18/opus-mt-pam-en",
"eng-pam": "Coco-18/opus-mt-en-pam",
"tgl-eng": "Helsinki-NLP/opus-mt-tl-en",
"eng-tgl": "Helsinki-NLP/opus-mt-en-tl",
"phi": "Coco-18/opus-mt-phi"
}
# Cache settings
MAX_CACHE_SIZE = 100 # Maximum number of items to cache
CACHE_TTL = 3600 # Time to live in seconds (1 hour)
def init_models(device):
"""Initialize all models required for the API with parallelization"""
global asr_model, asr_processor, tts_models, tts_processors, translation_models, translation_tokenizers
logger.info("π Starting parallel model initialization")
# Define model initialization functions
def init_asr():
global asr_model, asr_processor
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
try:
asr_processor = AutoProcessor.from_pretrained(
ASR_MODEL_ID,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
asr_model = Wav2Vec2ForCTC.from_pretrained(
ASR_MODEL_ID,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
asr_model.to(device)
logger.info(f"β
ASR model loaded successfully on {device}")
return True
except Exception as e:
logger.error(f"β Error loading ASR model: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return False
def init_tts(lang, model_id):
try:
processor = AutoTokenizer.from_pretrained(
model_id,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
model = VitsModel.from_pretrained(
model_id,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
model.to(device)
logger.info(f"β
{lang} TTS model loaded on {device}")
return lang, processor, model
except Exception as e:
logger.error(f"β Failed to load {lang} TTS model: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return lang, None, None
def init_translation(model_key, model_id):
try:
tokenizer = MarianTokenizer.from_pretrained(
model_id,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
model = MarianMTModel.from_pretrained(
model_id,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
model.to(device)
logger.info(f"β
Translation model loaded successfully on {device} for {model_key}")
return model_key, tokenizer, model
except Exception as e:
logger.error(f"β Error loading Translation model for {model_key}: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return model_key, None, None
# Use ThreadPoolExecutor to initialize models in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
# Start ASR model initialization
asr_future = executor.submit(init_asr)
# Start TTS model initialization in parallel
tts_futures = {
executor.submit(init_tts, lang, model_id): lang
for lang, model_id in TTS_MODELS.items()
}
# Start translation model initialization in parallel
translation_futures = {
executor.submit(init_translation, model_key, model_id): model_key
for model_key, model_id in TRANSLATION_MODELS.items()
}
# Wait for all futures to complete and process results
# Process TTS results
for future in concurrent.futures.as_completed(tts_futures):
lang, processor, model = future.result()
if processor is not None and model is not None:
tts_processors[lang] = processor
tts_models[lang] = model
# Process translation results
for future in concurrent.futures.as_completed(translation_futures):
model_key, tokenizer, model = future.result()
if tokenizer is not None and model is not None:
translation_tokenizers[model_key] = tokenizer
translation_models[model_key] = model
# Log summary of loaded models
logger.info("π Model initialization summary:")
logger.info(f" - ASR model: {'loaded' if asr_model is not None else 'failed'}")
logger.info(f" - TTS models loaded: {sum(1 for m in tts_models.values() if m is not None)}/{len(TTS_MODELS)}")
logger.info(f" - Translation models loaded: {sum(1 for m in translation_models.values() if m is not None)}/{len(TRANSLATION_MODELS)}")
def check_model_status():
"""Check and return the status of all models"""
# Initialize direct language pair statuses based on loaded models
translation_status = {}
# Add status for direct model pairs
for lang_pair in ["pam-eng", "eng-pam", "tgl-eng", "eng-tgl"]:
translation_status[lang_pair] = "loaded" if lang_pair in translation_models and translation_models[
lang_pair] is not None else "failed"
# Add special phi model status
phi_status = "loaded" if "phi" in translation_models and translation_models["phi"] is not None else "failed"
translation_status["pam-fil"] = phi_status
translation_status["fil-pam"] = phi_status
translation_status["pam-tgl"] = phi_status # Using phi model but replacing tgl with fil
translation_status["tgl-pam"] = phi_status # Using phi model but replacing tgl with fil
return {
"asr_model": "loaded" if asr_model is not None else "failed",
"tts_models": {lang: "loaded" if model is not None else "failed"
for lang, model in tts_models.items()},
"translation_models": translation_status
}
# Cache for ASR results
@lru_cache(maxsize=MAX_CACHE_SIZE)
def get_cached_transcription(file_hash, language_code):
"""Retrieve cached transcription result if available"""
return asr_cache.get((file_hash, language_code))
def process_audio_file(audio_data, temp_audio_path, output_dir, sample_rate):
"""Process audio file for ASR (separate from ASR logic)"""
wav_path = temp_audio_path
if not temp_audio_path.lower().endswith(".wav"):
wav_path = os.path.join(output_dir, "converted_audio.wav")
logger.info(f"π Converting audio to WAV format: {wav_path}")
try:
audio = AudioSegment.from_file(temp_audio_path)
audio = audio.set_frame_rate(sample_rate).set_channels(1)
audio.export(wav_path, format="wav")
except Exception as e:
logger.error(f"β Audio conversion failed: {str(e)}")
raise Exception(f"Audio conversion failed: {str(e)}")
# Load and process the WAV file
try:
waveform, sr = torchaudio.load(wav_path)
# Resample if needed
if sr != sample_rate:
waveform = torchaudio.transforms.Resample(sr, sample_rate)(waveform)
# Normalize waveform
waveform = waveform / torch.max(torch.abs(waveform))
return waveform.squeeze().numpy(), wav_path
except Exception as e:
logger.error(f"β Failed to load or process audio: {str(e)}")
raise Exception(f"Audio processing failed: {str(e)}")
def compute_audio_hash(audio_data):
"""Compute a hash of audio data for caching purposes"""
import hashlib
return hashlib.md5(audio_data).hexdigest()
def handle_asr_request(request, output_dir, sample_rate):
"""Handle ASR (Automatic Speech Recognition) requests with optimization"""
if asr_model is None or asr_processor is None:
logger.error("β ASR endpoint called but models aren't loaded")
return jsonify({"error": "ASR model not available"}), 503
try:
if "audio" not in request.files:
logger.warning("β οΈ ASR request missing audio file")
return jsonify({"error": "No audio file uploaded"}), 400
audio_file = request.files["audio"]
language = request.form.get("language", "english").lower()
if language not in LANGUAGE_CODES:
logger.warning(f"β οΈ Unsupported language requested: {language}")
return jsonify(
{"error": f"Unsupported language: {language}. Available: {list(LANGUAGE_CODES.keys())}"}), 400
lang_code = LANGUAGE_CODES[language]
logger.info(f"π Processing {language} audio for ASR")
# Read the file content for hashing
audio_content = audio_file.read()
audio_hash = compute_audio_hash(audio_content)
# Check cache first
with asr_lock:
cached_result = asr_cache.get((audio_hash, lang_code))
if cached_result:
logger.info(f"β
Using cached ASR result for {language}")
return jsonify({
"transcription": cached_result,
"language": language,
"language_code": lang_code,
"from_cache": True
})
# Save the uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
temp_audio.write(audio_content)
temp_audio_path = temp_audio.name
logger.debug(f"π Temporary audio saved to {temp_audio_path}")
# Process audio in a separate thread/process
try:
with ThreadPoolExecutor(max_workers=2) as executor:
future = executor.submit(process_audio_file, audio_content, temp_audio_path, output_dir, sample_rate)
waveform, wav_path = future.result()
except Exception as e:
return jsonify({"error": str(e)}), 500
# Process audio for ASR
try:
inputs = asr_processor(
waveform,
sampling_rate=sample_rate,
return_tensors="pt",
language=lang_code
)
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
except Exception as e:
logger.error(f"β ASR preprocessing failed: {str(e)}")
return jsonify({"error": f"ASR preprocessing failed: {str(e)}"}), 500
# Perform ASR
try:
with torch.no_grad():
logits = asr_model(**inputs).logits
ids = torch.argmax(logits, dim=-1)[0]
transcription = asr_processor.decode(ids)
logger.info(f"β
Transcription ({language}): {transcription}")
# Cache the result
with asr_lock:
asr_cache[(audio_hash, lang_code)] = transcription
# Implement cache size limitation if needed
if len(asr_cache) > MAX_CACHE_SIZE:
# Remove oldest entry (simplified approach)
asr_cache.pop(next(iter(asr_cache)))
# Clean up temp files
try:
os.unlink(temp_audio_path)
if wav_path != temp_audio_path:
os.unlink(wav_path)
except Exception as e:
logger.warning(f"β οΈ Failed to clean up temp files: {str(e)}")
return jsonify({
"transcription": transcription,
"language": language,
"language_code": lang_code,
"from_cache": False
})
except Exception as e:
logger.error(f"β ASR inference failed: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
except Exception as e:
logger.error(f"β Unhandled exception in ASR endpoint: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
# Cache key generator for TTS
def tts_cache_key(text, language):
"""Generate a cache key for TTS results"""
import hashlib
return hashlib.md5(f"{text}:{language}".encode()).hexdigest()
def handle_tts_request(request, output_dir):
"""Handle TTS (Text-to-Speech) requests with optimization"""
try:
data = request.get_json()
if not data:
logger.warning("β οΈ TTS endpoint called with no JSON data")
return jsonify({"error": "No JSON data provided"}), 400
text_input = data.get("text", "").strip()
language = data.get("language", "kapampangan").lower()
if not text_input:
logger.warning("β οΈ TTS request with empty text")
return jsonify({"error": "No text provided"}), 400
if language not in TTS_MODELS:
logger.warning(f"β οΈ TTS requested for unsupported language: {language}")
return jsonify({"error": f"Invalid language. Available options: {list(TTS_MODELS.keys())}"}), 400
if tts_models[language] is None:
logger.error(f"β TTS model for {language} not loaded")
return jsonify({"error": f"TTS model for {language} not available"}), 503
logger.info(f"π Generating TTS for language: {language}, text: '{text_input}'")
# Generate cache key
cache_key = tts_cache_key(text_input, language)
# Check cache
with tts_lock:
cached_file = tts_cache.get(cache_key)
if cached_file and os.path.exists(cached_file):
logger.info(f"β
Using cached TTS audio for: '{text_input}'")
return jsonify({
"message": "TTS audio retrieved from cache",
"file_url": f"/download/{os.path.basename(cached_file)}",
"language": language,
"text_length": len(text_input),
"from_cache": True
})
# Chunk text if too long (optional optimization for very long texts)
MAX_TEXT_LENGTH = 200 # Maximum text length to process in one go
if len(text_input) > MAX_TEXT_LENGTH:
# Simple chunking by splitting on periods
chunks = []
current_chunk = ""
for sentence in text_input.split("."):
if len(current_chunk) + len(sentence) < MAX_TEXT_LENGTH:
current_chunk += sentence + "."
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = sentence + "."
if current_chunk:
chunks.append(current_chunk)
logger.info(f"π Text chunked into {len(chunks)} parts for processing")
# Process chunks and combine results
try:
processor = tts_processors[language]
model = tts_models[language]
# For simplicity, we'll just use the first chunk in this example
# A full implementation would process all chunks and concatenate audio
text_input = chunks[0]
logger.info(f"β οΈ Using only the first chunk for demonstration: '{text_input}'")
except Exception as e:
logger.error(f"β TTS chunking failed: {str(e)}")
return jsonify({"error": f"TTS chunking failed: {str(e)}"}), 500
try:
processor = tts_processors[language]
model = tts_models[language]
inputs = processor(text_input, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
except Exception as e:
logger.error(f"β TTS preprocessing failed: {str(e)}")
return jsonify({"error": f"TTS preprocessing failed: {str(e)}"}), 500
# Generate speech
try:
with torch.no_grad():
output = model(**inputs).waveform
waveform = output.squeeze().cpu().numpy()
except Exception as e:
logger.error(f"β TTS inference failed: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500
# Save to file
try:
output_filename = os.path.join(output_dir, f"{language}_{cache_key}.wav")
sampling_rate = model.config.sampling_rate
sf.write(output_filename, waveform, sampling_rate)
logger.info(f"β
Speech generated! File saved: {output_filename}")
# Cache the result
with tts_lock:
tts_cache[cache_key] = output_filename
# Implement cache size limitation if needed
if len(tts_cache) > MAX_CACHE_SIZE:
oldest_key = next(iter(tts_cache))
try:
os.remove(tts_cache[oldest_key])
except:
pass
tts_cache.pop(oldest_key)
except Exception as e:
logger.error(f"β Failed to save audio file: {str(e)}")
return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500
return jsonify({
"message": "TTS audio generated",
"file_url": f"/download/{os.path.basename(output_filename)}",
"language": language,
"text_length": len(text_input),
"from_cache": False
})
except Exception as e:
logger.error(f"β Unhandled exception in TTS endpoint: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
# Cache key generator for translation
def translation_cache_key(text, source_lang, target_lang):
"""Generate a cache key for translation results"""
import hashlib
return hashlib.md5(f"{text}:{source_lang}:{target_lang}".encode()).hexdigest()
def handle_translation_request(request):
"""Handle translation requests with optimization"""
try:
data = request.get_json()
if not data:
logger.warning("β οΈ Translation endpoint called with no JSON data")
return jsonify({"error": "No JSON data provided"}), 400
source_text = data.get("text", "").strip()
source_language = data.get("source_language", "").lower()
target_language = data.get("target_language", "").lower()
if not source_text:
logger.warning("β οΈ Translation request with empty text")
return jsonify({"error": "No text provided"}), 400
# Map language names to codes
source_code = LANGUAGE_CODES.get(source_language, source_language)
target_code = LANGUAGE_CODES.get(target_language, target_language)
logger.info(f"π Translating from {source_language} to {target_language}: '{source_text}'")
# Generate cache key
cache_key = translation_cache_key(source_text, source_code, target_code)
# Check cache
with translation_lock:
cached_result = translation_cache.get(cache_key)
if cached_result:
logger.info(f"β
Using cached translation result")
return jsonify({
"translated_text": cached_result,
"source_language": source_language,
"target_language": target_language,
"from_cache": True
})
# OPTIMIZED: Simplified language pair determination logic
model_key = None
actual_source_code = source_code
actual_target_code = target_code
input_text = source_text
# Determine which model to use with simplified logic
if f"{source_code}-{target_code}" in translation_models:
# Direct model exists
model_key = f"{source_code}-{target_code}"
use_phi_model = False
elif (source_code in ["pam", "fil", "tgl"] and target_code in ["pam", "fil", "tgl"]):
# Use phi model with appropriate substitutions
model_key = "phi"
use_phi_model = True
# Replace tgl with fil for the phi model if needed
if source_code == "tgl": actual_source_code = "fil"
if target_code == "tgl": actual_target_code = "fil"
# Prepare input text for phi model
input_text = f">>{actual_target_code}<< {source_text}"
else:
logger.warning(f"β οΈ No translation model available for {source_code}-{target_code}")
return jsonify(
{"error": f"Translation from {source_language} to {target_language} is not supported yet"}), 400
# Check if model exists and is loaded
if model_key not in translation_models or translation_models[model_key] is None:
logger.error(f"β Translation model for {model_key} not loaded")
return jsonify({"error": f"Translation model not available"}), 503
try:
# Get the model and tokenizer
model = translation_models[model_key]
tokenizer = translation_tokenizers[model_key]
# Tokenize the text
tokenized = tokenizer(input_text, return_tensors="pt", padding=True)
tokenized = {k: v.to(model.device) for k, v in tokenized.items()}
# Apply length-based optimizations
max_length = min(100, len(source_text.split()) * 2) # Adaptive length
with torch.no_grad():
translated = model.generate(
**tokenized,
max_length=max_length,
num_beams=4,
length_penalty=0.6,
early_stopping=True,
repetition_penalty=1.5,
no_repeat_ngram_size=3
)
# Decode the translation
result = tokenizer.decode(translated[0], skip_special_tokens=True)
logger.info(f"β
Translation result: '{result}'")
# Cache the result
with translation_lock:
translation_cache[cache_key] = result
# Implement cache size limitation if needed
if len(translation_cache) > MAX_CACHE_SIZE:
translation_cache.pop(next(iter(translation_cache)))
return jsonify({
"translated_text": result,
"source_language": source_language,
"target_language": target_language,
"from_cache": False
})
except Exception as e:
logger.error(f"β Translation processing failed: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500
except Exception as e:
logger.error(f"β Unhandled exception in translation endpoint: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
def get_asr_model():
return asr_model
def get_asr_processor():
return asr_processor |