Spaces:
Sleeping
Sleeping
| #@title Import required libraries | |
| import argparse | |
| import itertools | |
| import math | |
| import os | |
| import random | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| from torch.utils.data import Dataset | |
| import PIL | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import set_seed | |
| from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
| from PIL import Image | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | |
| pretrained_model_name_or_path = "stabilityai/stable-diffusion-2" #@param ["stabilityai/stable-diffusion-2", "stabilityai/stable-diffusion-2-base", "CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"] {allow-input: true} | |
| # example image urls | |
| urls = [ | |
| "https://huggingface.co/datasets/valhalla/images/resolve/main/2.jpeg", | |
| "https://huggingface.co/datasets/valhalla/images/resolve/main/3.jpeg", | |
| "https://huggingface.co/datasets/valhalla/images/resolve/main/5.jpeg", | |
| "https://huggingface.co/datasets/valhalla/images/resolve/main/6.jpeg", | |
| ] | |
| # what is it that you are teaching? `object` enables you to teach the model a new object to be used, `style` allows you to teach the model a new style one can use. | |
| what_to_teach = "object" #@param ["object", "style"] | |
| # the token you are going to use to represent your new concept (so when you prompt the model, you will say "A `<my-placeholder-token>` in an amusement park"). We use angle brackets to differentiate a token from other words/tokens, to avoid collision. | |
| placeholder_token = "<cat-toy>" #@param {type:"string"} | |
| # is a word that can summarise what your new concept is, to be used as a starting point | |
| initializer_token = "toy" #@param {type:"string"} | |
| def image_grid(imgs, rows, cols): | |
| assert len(imgs) == rows*cols | |
| w, h = imgs[0].size | |
| grid = Image.new('RGB', size=(cols*w, rows*h)) | |
| grid_w, grid_h = grid.size | |
| for i, img in enumerate(imgs): | |
| grid.paste(img, box=(i%cols*w, i//cols*h)) | |
| return grid | |
| #@title Setup the prompt templates for training | |
| imagenet_templates_small = [ | |
| "a photo of a {}", | |
| "a rendering of a {}", | |
| "a cropped photo of the {}", | |
| "the photo of a {}", | |
| "a photo of a clean {}", | |
| "a photo of a dirty {}", | |
| "a dark photo of the {}", | |
| "a photo of my {}", | |
| "a photo of the cool {}", | |
| "a close-up photo of a {}", | |
| "a bright photo of the {}", | |
| "a cropped photo of a {}", | |
| "a photo of the {}", | |
| "a good photo of the {}", | |
| "a photo of one {}", | |
| "a close-up photo of the {}", | |
| "a rendition of the {}", | |
| "a photo of the clean {}", | |
| "a rendition of a {}", | |
| "a photo of a nice {}", | |
| "a good photo of a {}", | |
| "a photo of the nice {}", | |
| "a photo of the small {}", | |
| "a photo of the weird {}", | |
| "a photo of the large {}", | |
| "a photo of a cool {}", | |
| "a photo of a small {}", | |
| ] | |
| imagenet_style_templates_small = [ | |
| "a painting in the style of {}", | |
| "a rendering in the style of {}", | |
| "a cropped painting in the style of {}", | |
| "the painting in the style of {}", | |
| "a clean painting in the style of {}", | |
| "a dirty painting in the style of {}", | |
| "a dark painting in the style of {}", | |
| "a picture in the style of {}", | |
| "a cool painting in the style of {}", | |
| "a close-up painting in the style of {}", | |
| "a bright painting in the style of {}", | |
| "a cropped painting in the style of {}", | |
| "a good painting in the style of {}", | |
| "a close-up painting in the style of {}", | |
| "a rendition in the style of {}", | |
| "a nice painting in the style of {}", | |
| "a small painting in the style of {}", | |
| "a weird painting in the style of {}", | |
| "a large painting in the style of {}", | |
| ] | |
| #@title Setup the dataset | |
| class TextualInversionDataset(Dataset): | |
| def __init__( | |
| self, | |
| data_root, | |
| tokenizer, | |
| learnable_property="object", # [object, style] | |
| size=512, | |
| repeats=100, | |
| interpolation="bicubic", | |
| flip_p=0.5, | |
| set="train", | |
| placeholder_token="*", | |
| center_crop=False, | |
| ): | |
| self.data_root = data_root | |
| self.tokenizer = tokenizer | |
| self.learnable_property = learnable_property | |
| self.size = size | |
| self.placeholder_token = placeholder_token | |
| self.center_crop = center_crop | |
| self.flip_p = flip_p | |
| self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] | |
| self.num_images = len(self.image_paths) | |
| self._length = self.num_images | |
| if set == "train": | |
| self._length = self.num_images * repeats | |
| self.interpolation = { | |
| "linear": PIL.Image.LINEAR, | |
| "bilinear": PIL.Image.BILINEAR, | |
| "bicubic": PIL.Image.BICUBIC, | |
| "lanczos": PIL.Image.LANCZOS, | |
| }[interpolation] | |
| self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small | |
| self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) | |
| def __len__(self): | |
| return self._length | |
| def __getitem__(self, i): | |
| example = {} | |
| image = Image.open(self.image_paths[i % self.num_images]) | |
| if not image.mode == "RGB": | |
| image = image.convert("RGB") | |
| placeholder_string = self.placeholder_token | |
| text = random.choice(self.templates).format(placeholder_string) | |
| example["input_ids"] = self.tokenizer( | |
| text, | |
| padding="max_length", | |
| truncation=True, | |
| max_length=self.tokenizer.model_max_length, | |
| return_tensors="pt", | |
| ).input_ids[0] | |
| # default to score-sde preprocessing | |
| img = np.array(image).astype(np.uint8) | |
| if self.center_crop: | |
| crop = min(img.shape[0], img.shape[1]) | |
| h, w, = ( | |
| img.shape[0], | |
| img.shape[1], | |
| ) | |
| img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] | |
| image = Image.fromarray(img) | |
| image = image.resize((self.size, self.size), resample=self.interpolation) | |
| image = self.flip_transform(image) | |
| image = np.array(image).astype(np.uint8) | |
| image = (image / 127.5 - 1.0).astype(np.float32) | |
| example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) | |
| return example | |
| #@title Load the tokenizer and add the placeholder token as a additional special token. | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| pretrained_model_name_or_path, | |
| subfolder="tokenizer", | |
| ) | |
| # Add the placeholder token in tokenizer | |
| num_added_tokens = tokenizer.add_tokens(placeholder_token) | |
| if num_added_tokens == 0: | |
| raise ValueError( | |
| f"The tokenizer already contains the token {placeholder_token}. Please pass a different" | |
| " `placeholder_token` that is not already in the tokenizer." | |
| ) | |
| #@title Get token ids for our placeholder and initializer token. This code block will complain if initializer string is not a single token | |
| # Convert the initializer_token, placeholder_token to ids | |
| token_ids = tokenizer.encode(initializer_token, add_special_tokens=False) | |
| # Check if initializer_token is a single token or a sequence of tokens | |
| if len(token_ids) > 1: | |
| raise ValueError("The initializer token must be a single token.") | |
| initializer_token_id = token_ids[0] | |
| placeholder_token_id = tokenizer.convert_tokens_to_ids(placeholder_token) | |
| #@title Load the Stable Diffusion model | |
| # Load models and create wrapper for stable diffusion | |
| # pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path) | |
| # del pipeline | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| pretrained_model_name_or_path, subfolder="text_encoder" | |
| ) | |
| vae = AutoencoderKL.from_pretrained( | |
| pretrained_model_name_or_path, subfolder="vae" | |
| ) | |
| unet = UNet2DConditionModel.from_pretrained( | |
| pretrained_model_name_or_path, subfolder="unet" | |
| ) | |
| text_encoder.resize_token_embeddings(len(tokenizer)) | |
| token_embeds = text_encoder.get_input_embeddings().weight.data | |
| token_embeds[placeholder_token_id] = token_embeds[initializer_token_id] | |
| def freeze_params(params): | |
| for param in params: | |
| param.requires_grad = False | |
| # Freeze vae and unet | |
| freeze_params(vae.parameters()) | |
| freeze_params(unet.parameters()) | |
| # Freeze all parameters except for the token embeddings in text encoder | |
| params_to_freeze = itertools.chain( | |
| text_encoder.text_model.encoder.parameters(), | |
| text_encoder.text_model.final_layer_norm.parameters(), | |
| text_encoder.text_model.embeddings.position_embedding.parameters(), | |
| ) | |
| freeze_params(params_to_freeze) | |
| train_dataset = TextualInversionDataset( | |
| data_root=save_path, | |
| tokenizer=tokenizer, | |
| size=vae.sample_size, | |
| placeholder_token=placeholder_token, | |
| repeats=100, | |
| learnable_property=what_to_teach, #Option selected above between object and style | |
| center_crop=False, | |
| set="train", | |
| ) | |
| def create_dataloader(train_batch_size=1): | |
| return torch.utils.data.DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True) | |
| noise_scheduler = DDPMScheduler.from_config(pretrained_model_name_or_path, subfolder="scheduler") | |
| # TODO: Add training scripts | |