Spaces:
Sleeping
Sleeping
File size: 14,048 Bytes
6af7294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import diffusers
import transformers
import utils.log
import torch
import PIL
from typing import Union, Dict, Any, Optional, List, Tuple, Callable
import os
import re
class SimpleDiffusion(diffusers.DiffusionPipeline):
"""
An unified interface for diffusion models. This allow us to use :
- txt2img
- img2img
- inpainting
- unconditional image generation
This class is highly inspired from the Stable-Diffusion-Mega pipeline.
DiffusionPipeline class allow us to load/download all the models hubbed by HuggingFace with an ease. Read more information
about the DiffusionPipeline class here: https://huggingface.co/transformers/main_classes/pipelines.html#transformers.DiffusionPipeline
Args:
logger (:obj:`utils.log.Logger`):
The logger to use for logging any information.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: diffusers.AutoencoderKL,
text_encoder: transformers.CLIPTextModel,
tokenizer: transformers.CLIPTokenizer,
unet: diffusers.UNet2DConditionModel,
scheduler: Union[diffusers.DDIMScheduler, diffusers.PNDMScheduler, diffusers.LMSDiscreteScheduler],
safety_checker: diffusers.pipelines.stable_diffusion.safety_checker.StableDiffusionSafetyChecker,
feature_extractor: transformers.CLIPFeatureExtractor,
prompt_generation = "succinctly/text2image-prompt-generator"
):
super().__init__()
self._logger = None
self.register_modules( # already defined in ConfigMixin class, from_pretrained loads these modules
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self._generated_prompts = []
self._enable_prompt_generation = False
if prompt_generation:
self._enable_prompt_generation = True
self._prompt_generator = transformers.pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2')
def _generate_prompt(self, prompt, **kwargs):
"""
Generate a prompt from a given text.
Args:
prompt (str): The text to generate a prompt from.
**kwargs: Additional keyword arguments passed to the prompt generator pipeline.
"""
max_length = kwargs.pop("max_length", None)
num_return_sequences = kwargs.pop("num_return_sequences", None)
prompt = self._prompt_generator(prompt, max_length=max_length, num_return_sequences=num_return_sequences)
prompt = self._process_prompt(prompt, **kwargs)
return prompt[0]['generated_text']
def _process_prompt(self,original_prompt, prompt_list):
# TODO : Add documentation; add more prompt processing
response_list = []
for x in prompt_list:
resp = x['generated_text'].strip()
if resp != original_prompt and len(resp) > (len(original_prompt) + 4) and resp.endswith((":", "-", "—")) is False:
response_list.append(resp+'\n')
response_end = "\n".join(response_list)
response_end = re.sub('[^ ]+\.[^ ]+','', response_end)
response_end = response_end.replace("<", "").replace(">", "")
if response_end != "":
return response_end
# Following components are required for the DiffusionPipeline class - but they exist in the StableDiffusionModel class
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
Refer to the [StableDiffusionModel](https://github.com/huggingface/diffusers/blob/main/examples/community/stable_diffusion_mega.py) repo
for more information.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
if self._logger is not None:
self._logger.info("Attention slicing enabled!")
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
if self._logger is not None:
self._logger.info("Attention slicing disabled!")
self.enable_attention_slicing(None)
def set_logger(self, logger):
r"""
Set logger. This is useful to log information about the model.
"""
self._logger = logger
@property
def components(self) -> Dict[str, Any]:
# Return the non-private variables
return {k : getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
@torch.no_grad()
def inpaint(
self,
prompt: Union[str, List[str]],
init_image: Union[torch.FloatTensor, PIL.Image.Image],
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
if self._enable_prompt_generation:
prompt = self._generate_prompt(p, **kwargs)[0]
self._logger.info(f"Generated prompt: {prompt}")
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline
return diffusers.StableDiffusionInpaintPipelineLegacy(**self.components)(
prompt=prompt,
init_image=init_image,
mask_image=mask_image,
strength=strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
output_type=output_type,
return_dict=return_dict,
callback=callback,
)
@torch.no_grad()
def img2img(
self,
prompt: Union[str, List[str]],
init_image: Union[torch.FloatTensor, PIL.Image.Image],
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
if self._enable_prompt_generation:
prompt = self._generate_prompt(p, **kwargs)[0]
self._logger.info(f"Generated prompt: {prompt}")
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline
return diffusers.StableDiffusionImg2ImgPipeline(**self.components)(
prompt=prompt,
init_image=init_image,
strength=strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
@torch.no_grad()
def text2img(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
if self._enable_prompt_generation:
prompt = self._generate_prompt(p, **kwargs)[0]
self._logger.info(f"Generated prompt: {prompt}")
# For more information on how this function https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionPipeline
return diffusers.StableDiffusionPipeline(**self.components)(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
@torch.no_grad()
def upscale(
self,
prompt: Union[str, List[str]],
init_image: Union[torch.FloatTensor, PIL.Image.Image],
num_inference_steps: Optional[int] = 75,
guidance_scale: Optional[float] = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
"""
Upscale an image using the StableDiffusionUpscalePipeline.
"""
if self._enable_prompt_generation:
prompt = self._generate_prompt(p, **kwargs)[0]
self._logger.info(f"Generated prompt: {prompt}")
return diffusers.StableDiffusionUpscalePipeline(**self.components)(
prompt=prompt,
image=init_image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type = output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps)
def set_scheduler(self, scheduler: Union[diffusers.DDIMScheduler, diffusers.PNDMScheduler, diffusers.LMSDiscreteScheduler, diffusers.EulerDiscreteScheduler]):
"""
Set the scheduler for the pipeline. This is useful for controlling the diffusion process.
Args:
scheduler (Union[diffusers.DDIMScheduler, diffusers.PNDMScheduler, diffusers.LMSDiscreteScheduler]): The scheduler to use.
"""
self.components["scheduler"] = scheduler |