TuringsSolutions's picture
Update app.py
c0b89f3 verified
raw
history blame
1.32 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModel
import torch
import json
# Load the tokenizer
model_name = "TuringsSolutions/TechLegalV1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load adapter configuration manually
adapter_config_path = "https://huggingface.co/TuringsSolutions/TechLegalV1/resolve/main/adapter_config.json"
adapter_model_path = "https://huggingface.co/TuringsSolutions/TechLegalV1/resolve/main/adapter_model.safetensors"
with open(adapter_config_path, 'r') as f:
adapter_config = json.load(f)
# Initialize the model with the adapter configuration
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
# Load adapter weights
model.load_adapter(adapter_model_path, config=adapter_config)
# Function to make predictions
def predict(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
# Create a Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
outputs="json",
title="Tech Legal Model",
description="A model for analyzing tech legal documents."
)
# Launch the interface
if __name__ == "__main__":
iface.launch()