Spaces:
Build error
Build error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import json | |
# Load the tokenizer | |
model_name = "TuringsSolutions/TechLegalV1" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Load adapter configuration manually | |
adapter_config_path = "https://huggingface.co/TuringsSolutions/TechLegalV1/resolve/main/adapter_config.json" | |
adapter_model_path = "https://huggingface.co/TuringsSolutions/TechLegalV1/resolve/main/adapter_model.safetensors" | |
with open(adapter_config_path, 'r') as f: | |
adapter_config = json.load(f) | |
# Initialize the model with the adapter configuration | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | |
# Load adapter weights | |
model.load_adapter(adapter_model_path, config=adapter_config) | |
# Function to make predictions | |
def predict(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist() | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."), | |
outputs="json", | |
title="Tech Legal Model", | |
description="A model for analyzing tech legal documents." | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch() | |