TuringsSolutions's picture
Update app.py
0ce095d verified
raw
history blame
967 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the tokenizer
model_name = "TuringsSolutions/TechLegalV1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the model
# Assuming it's a CausalLM model, you might need to adjust based on your model's architecture
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# Function to make predictions
def predict(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create a Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
outputs="text",
title="Tech Legal Model",
description="A model for analyzing tech legal documents."
)
# Launch the interface
if __name__ == "__main__":
iface.launch()