my
Browse files
app.py
CHANGED
@@ -75,7 +75,7 @@ def upload_file():
|
|
75 |
})
|
76 |
|
77 |
def process_image():
|
78 |
-
model = YOLOv10(f'
|
79 |
dataset = sv.DetectionDataset.from_yolo(
|
80 |
images_directory_path=f"/data/MyNewVersion5.0Dataset/valid/images",
|
81 |
annotations_directory_path=f"/data/MyNewVersion5.0Dataset/valid/labels",
|
@@ -83,20 +83,20 @@ def process_image():
|
|
83 |
)
|
84 |
bounding_box_annotator = sv.BoundingBoxAnnotator()
|
85 |
label_annotator = sv.LabelAnnotator()
|
86 |
-
image_dir = "
|
87 |
files = os.listdir('/data1')
|
88 |
files.sort()
|
89 |
files = files[0:100]
|
90 |
print(files)
|
91 |
counter = 0
|
92 |
for ii in files:
|
93 |
-
random_image_data = cv2.imread('
|
94 |
-
random_image_data1 = cv2.imread('
|
95 |
-
results = model(source='
|
96 |
detections = sv.Detections.from_ultralytics(results)
|
97 |
annotated_image = bounding_box_annotator.annotate(scene=random_image_data, detections=detections)
|
98 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
99 |
-
save_path = "
|
100 |
cv2.imwrite(save_path, annotated_image)
|
101 |
print(f"Annotated image saved at {save_path}")
|
102 |
bounding_boxes = results.boxes.xyxy.cpu().numpy()
|
|
|
75 |
})
|
76 |
|
77 |
def process_image():
|
78 |
+
model = YOLOv10(f'./runs/detect/train3/weights/best (1).pt')
|
79 |
dataset = sv.DetectionDataset.from_yolo(
|
80 |
images_directory_path=f"/data/MyNewVersion5.0Dataset/valid/images",
|
81 |
annotations_directory_path=f"/data/MyNewVersion5.0Dataset/valid/labels",
|
|
|
83 |
)
|
84 |
bounding_box_annotator = sv.BoundingBoxAnnotator()
|
85 |
label_annotator = sv.LabelAnnotator()
|
86 |
+
image_dir = "./data1"
|
87 |
files = os.listdir('/data1')
|
88 |
files.sort()
|
89 |
files = files[0:100]
|
90 |
print(files)
|
91 |
counter = 0
|
92 |
for ii in files:
|
93 |
+
random_image_data = cv2.imread('./data1/' + ii)
|
94 |
+
random_image_data1 = cv2.imread('./data1/' + ii)
|
95 |
+
results = model(source='./data1/' + ii, conf=0.07)[0]
|
96 |
detections = sv.Detections.from_ultralytics(results)
|
97 |
annotated_image = bounding_box_annotator.annotate(scene=random_image_data, detections=detections)
|
98 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
99 |
+
save_path = "./Folder1/" + "detection" + ii
|
100 |
cv2.imwrite(save_path, annotated_image)
|
101 |
print(f"Annotated image saved at {save_path}")
|
102 |
bounding_boxes = results.boxes.xyxy.cpu().numpy()
|