my
Browse files- app2.py +241 -0
- requirements.txt +2 -1
app2.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import csv
|
| 3 |
+
import easyocr
|
| 4 |
+
import shutil
|
| 5 |
+
import random
|
| 6 |
+
import cv2
|
| 7 |
+
from glob import glob
|
| 8 |
+
from ultralytics import YOLOv10
|
| 9 |
+
import random
|
| 10 |
+
from glob import glob
|
| 11 |
+
from ultralytics import YOLOv10
|
| 12 |
+
import supervision as sva
|
| 13 |
+
from ultralytics import YOLOv10
|
| 14 |
+
import supervision as sv
|
| 15 |
+
import supervision as sv
|
| 16 |
+
from flask import Flask, request, jsonify, send_from_directory, render_template
|
| 17 |
+
|
| 18 |
+
import textwrap
|
| 19 |
+
app = Flask(__name__)
|
| 20 |
+
|
| 21 |
+
def enhance_contrast(image):
|
| 22 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 23 |
+
equalized_image = cv2.equalizeHist(gray_image)
|
| 24 |
+
return equalized_image
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def calculate_iou(bbox1, bbox2):
|
| 28 |
+
x1_max = max(bbox1[0], bbox2[0])
|
| 29 |
+
y1_max = max(bbox1[1], bbox2[1])
|
| 30 |
+
x2_min = min(bbox1[2], bbox2[2])
|
| 31 |
+
y2_min = min(bbox1[3], bbox2[3])
|
| 32 |
+
|
| 33 |
+
inter_area = max(0, x2_min - x1_max) * max(0, y2_min - y1_max)
|
| 34 |
+
|
| 35 |
+
bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
|
| 36 |
+
bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
|
| 37 |
+
|
| 38 |
+
iou = inter_area / float(bbox1_area + bbox2_area - inter_area) if (bbox1_area + bbox2_area - inter_area) > 0 else 0
|
| 39 |
+
return iou
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
cropped_dir = "./app/cropped_images/"
|
| 43 |
+
if os.path.exists(cropped_dir):
|
| 44 |
+
shutil.rmtree(cropped_dir)
|
| 45 |
+
os.makedirs(cropped_dir, exist_ok=True)
|
| 46 |
+
|
| 47 |
+
output_dir1 = "./app/Folder1"
|
| 48 |
+
output_dir2 = "./app/Folder2"
|
| 49 |
+
output_dir3 = "./app/Folder3"
|
| 50 |
+
UPLOAD_FOLDER = "./app/data1"
|
| 51 |
+
os.makedirs(output_dir1, exist_ok=True)
|
| 52 |
+
os.makedirs(output_dir2, exist_ok=True)
|
| 53 |
+
os.makedirs(output_dir3, exist_ok=True)
|
| 54 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 55 |
+
|
| 56 |
+
@app.route('/')
|
| 57 |
+
def index():
|
| 58 |
+
return render_template('index3.html') # This will serve your HTML page
|
| 59 |
+
|
| 60 |
+
@app.route('/upload', methods=['POST'])
|
| 61 |
+
def upload_file():
|
| 62 |
+
if 'invoice-upload' not in request.files:
|
| 63 |
+
return jsonify({'error': 'No file part'}), 400
|
| 64 |
+
file = request.files['invoice-upload']
|
| 65 |
+
if file.filename == '':
|
| 66 |
+
return jsonify({'error': 'No selected file'}), 400
|
| 67 |
+
if file:
|
| 68 |
+
file_path = os.path.join(UPLOAD_FOLDER, file.filename)
|
| 69 |
+
file.save(file_path)
|
| 70 |
+
output_image, output_csv = process_image()
|
| 71 |
+
|
| 72 |
+
return jsonify({
|
| 73 |
+
'image_path': output_image,
|
| 74 |
+
'csv_path': output_csv
|
| 75 |
+
})
|
| 76 |
+
|
| 77 |
+
def process_image():
|
| 78 |
+
print("Current working directory:", os.getcwd())
|
| 79 |
+
|
| 80 |
+
# Check contents in the root directory
|
| 81 |
+
print("Current directory contents:", os.listdir('/'))
|
| 82 |
+
|
| 83 |
+
model = YOLOv10(f'./runs/detect/train3/weights/best (1).pt')
|
| 84 |
+
dataset = sv.DetectionDataset.from_yolo(
|
| 85 |
+
images_directory_path=f"./data/MyNewVersion5.0Dataset/valid/images",
|
| 86 |
+
annotations_directory_path=f"./data/MyNewVersion5.0Dataset/valid/labels",
|
| 87 |
+
data_yaml_path=f"./data/MyNewVersion5.0Dataset/data.yaml"
|
| 88 |
+
)
|
| 89 |
+
bounding_box_annotator = sv.BoundingBoxAnnotator()
|
| 90 |
+
label_annotator = sv.LabelAnnotator()
|
| 91 |
+
image_dir = "./app/data1"
|
| 92 |
+
files = os.listdir('./app/data1')
|
| 93 |
+
files.sort()
|
| 94 |
+
files = files[0:100]
|
| 95 |
+
print(files)
|
| 96 |
+
counter = 0
|
| 97 |
+
for ii in files:
|
| 98 |
+
random_image_data = cv2.imread('./app/data1/' + ii)
|
| 99 |
+
random_image_data1 = cv2.imread('./app/data1/' + ii)
|
| 100 |
+
results = model(source='./app/data1/' + ii, conf=0.07)[0]
|
| 101 |
+
detections = sv.Detections.from_ultralytics(results)
|
| 102 |
+
annotated_image = bounding_box_annotator.annotate(scene=random_image_data, detections=detections)
|
| 103 |
+
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
| 104 |
+
save_path = "./app/Folder1/" + "detection" + ii
|
| 105 |
+
cv2.imwrite(save_path, annotated_image)
|
| 106 |
+
print(f"Annotated image saved at {save_path}")
|
| 107 |
+
bounding_boxes = results.boxes.xyxy.cpu().numpy()
|
| 108 |
+
class_ids = results.boxes.cls.cpu().numpy()
|
| 109 |
+
confidences = results.boxes.conf.cpu().numpy()
|
| 110 |
+
bounding_box_save_path = "./bounding_boxes.txt"
|
| 111 |
+
with open(bounding_box_save_path, 'w') as f:
|
| 112 |
+
for i, (bbox, class_id, confidence) in enumerate(zip(bounding_boxes, class_ids, confidences)):
|
| 113 |
+
x1, y1, x2, y2 = map(int, bbox)
|
| 114 |
+
f.write(f"Object {i + 1}: Class {class_id}, Confidence: {confidence:.2f}, "
|
| 115 |
+
f"Bounding box: ({x1}, {y1}, {x2}, {y2})\n")
|
| 116 |
+
cropped_image = random_image_data1[y1:y2, x1:x2]
|
| 117 |
+
cropped_image_path = os.path.join(cropped_dir, f"cropped_object_{i + 1}.jpg")
|
| 118 |
+
cv2.imwrite(cropped_image_path, cropped_image)
|
| 119 |
+
print(f"Enhanced cropped image saved at {cropped_image_path}")
|
| 120 |
+
print(f"Checking contents of /app/data: {bounding_box_save_path}")
|
| 121 |
+
print(f"Directory listing: {os.listdir('./app/Folder1')}")
|
| 122 |
+
print(f"Bounding box coordinates saved at {bounding_box_save_path}")
|
| 123 |
+
try:
|
| 124 |
+
reader = easyocr.Reader(['en'],recog_network='en_sample',model_storage_directory='./EasyOCR-Trainer/EasyOCR/easyocr/model', user_network_directory='./EasyOCR-Trainer/EasyOCR/user_network')
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"Error initializing EasyOCR Reader: {e}")
|
| 127 |
+
raise
|
| 128 |
+
reader = easyocr.Reader(
|
| 129 |
+
['en'],
|
| 130 |
+
recog_network='en_sample',
|
| 131 |
+
model_storage_directory='./EasyOCR-Trainer/EasyOCR/easyocr/model',
|
| 132 |
+
user_network_directory='./EasyOCR-Trainer/EasyOCR/user_network')
|
| 133 |
+
import re
|
| 134 |
+
input_file_path = './bounding_boxes.txt'
|
| 135 |
+
cropped_images_folder = './app/cropped_images/'
|
| 136 |
+
output_csv_path = './Folder2/' + ii + 'bounding_boxes_with_recognition.csv'
|
| 137 |
+
print(f"Checking contents of ./app/data: {bounding_box_save_path}")
|
| 138 |
+
print(f"Directory listing: {os.listdir('./app/data')}")
|
| 139 |
+
|
| 140 |
+
with open(input_file_path, 'r') as infile:
|
| 141 |
+
lines = infile.readlines()
|
| 142 |
+
with open(output_csv_path, 'w', newline='', encoding='utf-8') as csvfile:
|
| 143 |
+
csv_writer = csv.writer(csvfile)
|
| 144 |
+
csv_writer.writerow(['Object ID', 'Bounding Box', 'Image Name', 'Recognized Text'])
|
| 145 |
+
for i, line in enumerate(lines):
|
| 146 |
+
object_id = f"Object_{i + 1}"
|
| 147 |
+
bounding_box_info = line.strip()
|
| 148 |
+
cropped_image_name = f"cropped_object_{i + 1}.jpg"
|
| 149 |
+
cropped_image_path = os.path.join(cropped_images_folder, cropped_image_name)
|
| 150 |
+
if os.path.exists(cropped_image_path):
|
| 151 |
+
bbox_match = re.search(r"Bounding box: \((\d+), (\d+), (\d+), (\d+)\)", bounding_box_info)
|
| 152 |
+
if bbox_match:
|
| 153 |
+
x1, y1, x2, y2 = map(int, bbox_match.groups())
|
| 154 |
+
detected_boxes = [[x1, x2, y1, y2]]
|
| 155 |
+
else:
|
| 156 |
+
print("No bounding box found in the info.")
|
| 157 |
+
cropped_image = cv2.imread(cropped_image_path, cv2.IMREAD_GRAYSCALE)
|
| 158 |
+
horizontal_list1, free_list1 = reader.detect(cropped_image)
|
| 159 |
+
free_list1 = free_list1 if free_list1 is not None else []
|
| 160 |
+
horizontal_list1 = [box for sublist in horizontal_list1 for box in sublist]
|
| 161 |
+
free_list1 = []
|
| 162 |
+
horizontal_list_for_recognize = detected_boxes if not horizontal_list1 else horizontal_list1
|
| 163 |
+
if horizontal_list1:
|
| 164 |
+
result = reader.recognize(cropped_image, detail=0, horizontal_list=horizontal_list1,
|
| 165 |
+
free_list=free_list1)
|
| 166 |
+
else:
|
| 167 |
+
result = reader.recognize(random_image_data1, detail=0, horizontal_list=detected_boxes,
|
| 168 |
+
free_list=free_list1)
|
| 169 |
+
recognized_text = ' '.join(result) if result else ''
|
| 170 |
+
else:
|
| 171 |
+
recognized_text = 'No image found'
|
| 172 |
+
csv_writer.writerow([object_id, bounding_box_info, cropped_image_name, recognized_text])
|
| 173 |
+
print(f"CSV file with recognition results saved at {output_csv_path}")
|
| 174 |
+
|
| 175 |
+
def calculate_iou(bbox1, bbox2):
|
| 176 |
+
x1_max = max(bbox1[0], bbox2[0])
|
| 177 |
+
y1_max = max(bbox1[1], bbox2[1])
|
| 178 |
+
x2_min = min(bbox1[2], bbox2[2])
|
| 179 |
+
y2_min = min(bbox1[3], bbox2[3])
|
| 180 |
+
|
| 181 |
+
inter_area = max(0, x2_min - x1_max) * max(0, y2_min - y1_max)
|
| 182 |
+
|
| 183 |
+
bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
|
| 184 |
+
bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
|
| 185 |
+
|
| 186 |
+
iou = inter_area / float(bbox1_area + bbox2_area - inter_area) if (bbox1_area + bbox2_area - inter_area) > 0 else 0
|
| 187 |
+
return iou
|
| 188 |
+
|
| 189 |
+
image_path = "/data1" + ii
|
| 190 |
+
csv_file_path = output_csv_path = '/Folder2/' + ii + 'bounding_boxes_with_recognition.csv'
|
| 191 |
+
image = cv2.imread(image_path)
|
| 192 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 193 |
+
font_scale = 1.3
|
| 194 |
+
font_thickness = 2
|
| 195 |
+
color = (255, 0, 255)
|
| 196 |
+
bboxes = []
|
| 197 |
+
recognized_texts = []
|
| 198 |
+
with open(csv_file_path, 'r', encoding='utf-8') as csvfile:
|
| 199 |
+
csv_reader = csv.DictReader(csvfile)
|
| 200 |
+
for row in csv_reader:
|
| 201 |
+
bbox_match = re.search(r'\((\d+), (\d+), (\d+), (\d+)\)', row['Bounding Box'])
|
| 202 |
+
if bbox_match:
|
| 203 |
+
bbox = [int(bbox_match.group(i)) for i in range(1, 5)]
|
| 204 |
+
bboxes.append(bbox)
|
| 205 |
+
recognized_texts.append(row['Recognized Text'])
|
| 206 |
+
filtered_bboxes = []
|
| 207 |
+
filtered_texts = []
|
| 208 |
+
iou_threshold = 0.4
|
| 209 |
+
for i, bbox1 in enumerate(bboxes):
|
| 210 |
+
keep = True
|
| 211 |
+
for j, bbox2 in enumerate(filtered_bboxes):
|
| 212 |
+
if calculate_iou(bbox1, bbox2) > iou_threshold:
|
| 213 |
+
keep = False
|
| 214 |
+
break
|
| 215 |
+
if keep:
|
| 216 |
+
filtered_bboxes.append(bbox1)
|
| 217 |
+
filtered_texts.append(recognized_texts[i])
|
| 218 |
+
for bbox, recognized_text in zip(filtered_bboxes, filtered_texts):
|
| 219 |
+
x1, y1, x2, y2 = bbox
|
| 220 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
|
| 221 |
+
max_chars_per_line = 60
|
| 222 |
+
wrapped_text = textwrap.wrap(recognized_text, width=max_chars_per_line)
|
| 223 |
+
text_y = y1 - 10 if y1 - 10 > 10 else y1 + 10
|
| 224 |
+
for line in wrapped_text:
|
| 225 |
+
cv2.putText(image, line, (x1, text_y), font, font_scale, color, font_thickness)
|
| 226 |
+
text_y += int(font_scale * 20)
|
| 227 |
+
output_image_path = "/Folder3/" + "annotated" + ii + ".png"
|
| 228 |
+
cv2.imwrite(output_image_path, image)
|
| 229 |
+
print(f"Annotated image saved at {output_image_path}")
|
| 230 |
+
counter += 1
|
| 231 |
+
|
| 232 |
+
@app.route('/download_csv/<filename>')
|
| 233 |
+
def download_csv(filename):
|
| 234 |
+
return send_from_directory(output_dir2, filename, as_attachment=True)
|
| 235 |
+
|
| 236 |
+
@app.route('/download_image/<filename>')
|
| 237 |
+
def download_image(filename):
|
| 238 |
+
return send_from_directory(output_dir3, filename, as_attachment=True)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
requirements.txt
CHANGED
|
@@ -9,5 +9,6 @@ pandas
|
|
| 9 |
huggingface_hub
|
| 10 |
supervision
|
| 11 |
py-cpuinfo
|
| 12 |
-
|
|
|
|
| 13 |
|
|
|
|
| 9 |
huggingface_hub
|
| 10 |
supervision
|
| 11 |
py-cpuinfo
|
| 12 |
+
torch==2.5.1+cu121
|
| 13 |
+
torchvision==0.20.1+cu121
|
| 14 |
|