|
|
|
|
|
import math |
|
|
|
import cv2 |
|
|
|
from ultralytics.utils.checks import check_imshow |
|
from ultralytics.utils.plotting import Annotator, colors |
|
|
|
|
|
class DistanceCalculation: |
|
"""A class to calculate distance between two objects in real-time video stream based on their tracks.""" |
|
|
|
def __init__(self): |
|
"""Initializes the distance calculation class with default values for Visual, Image, track and distance |
|
parameters. |
|
""" |
|
|
|
|
|
self.im0 = None |
|
self.annotator = None |
|
self.view_img = False |
|
self.line_color = (255, 255, 0) |
|
self.centroid_color = (255, 0, 255) |
|
|
|
|
|
self.clss = None |
|
self.names = None |
|
self.boxes = None |
|
self.line_thickness = 2 |
|
self.trk_ids = None |
|
|
|
|
|
self.centroids = [] |
|
self.pixel_per_meter = 10 |
|
|
|
|
|
self.left_mouse_count = 0 |
|
self.selected_boxes = {} |
|
|
|
|
|
self.env_check = check_imshow(warn=True) |
|
|
|
def set_args( |
|
self, |
|
names, |
|
pixels_per_meter=10, |
|
view_img=False, |
|
line_thickness=2, |
|
line_color=(255, 255, 0), |
|
centroid_color=(255, 0, 255), |
|
): |
|
""" |
|
Configures the distance calculation and display parameters. |
|
|
|
Args: |
|
names (dict): object detection classes names |
|
pixels_per_meter (int): Number of pixels in meter |
|
view_img (bool): Flag indicating frame display |
|
line_thickness (int): Line thickness for bounding boxes. |
|
line_color (RGB): color of centroids line |
|
centroid_color (RGB): colors of bbox centroids |
|
""" |
|
self.names = names |
|
self.pixel_per_meter = pixels_per_meter |
|
self.view_img = view_img |
|
self.line_thickness = line_thickness |
|
self.line_color = line_color |
|
self.centroid_color = centroid_color |
|
|
|
def mouse_event_for_distance(self, event, x, y, flags, param): |
|
""" |
|
This function is designed to move region with mouse events in a real-time video stream. |
|
|
|
Args: |
|
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.). |
|
x (int): The x-coordinate of the mouse pointer. |
|
y (int): The y-coordinate of the mouse pointer. |
|
flags (int): Any flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, |
|
cv2.EVENT_FLAG_SHIFTKEY, etc.). |
|
param (dict): Additional parameters you may want to pass to the function. |
|
""" |
|
global selected_boxes |
|
global left_mouse_count |
|
if event == cv2.EVENT_LBUTTONDOWN: |
|
self.left_mouse_count += 1 |
|
if self.left_mouse_count <= 2: |
|
for box, track_id in zip(self.boxes, self.trk_ids): |
|
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes: |
|
self.selected_boxes[track_id] = [] |
|
self.selected_boxes[track_id] = box |
|
|
|
if event == cv2.EVENT_RBUTTONDOWN: |
|
self.selected_boxes = {} |
|
self.left_mouse_count = 0 |
|
|
|
def extract_tracks(self, tracks): |
|
""" |
|
Extracts results from the provided data. |
|
|
|
Args: |
|
tracks (list): List of tracks obtained from the object tracking process. |
|
""" |
|
self.boxes = tracks[0].boxes.xyxy.cpu() |
|
self.clss = tracks[0].boxes.cls.cpu().tolist() |
|
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist() |
|
|
|
def calculate_centroid(self, box): |
|
""" |
|
Calculate the centroid of bounding box. |
|
|
|
Args: |
|
box (list): Bounding box data |
|
""" |
|
return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) |
|
|
|
def calculate_distance(self, centroid1, centroid2): |
|
""" |
|
Calculate distance between two centroids. |
|
|
|
Args: |
|
centroid1 (point): First bounding box data |
|
centroid2 (point): Second bounding box data |
|
""" |
|
pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2) |
|
return pixel_distance / self.pixel_per_meter, (pixel_distance / self.pixel_per_meter) * 1000 |
|
|
|
def start_process(self, im0, tracks): |
|
""" |
|
Calculate distance between two bounding boxes based on tracking data. |
|
|
|
Args: |
|
im0 (nd array): Image |
|
tracks (list): List of tracks obtained from the object tracking process. |
|
""" |
|
self.im0 = im0 |
|
if tracks[0].boxes.id is None: |
|
if self.view_img: |
|
self.display_frames() |
|
return |
|
self.extract_tracks(tracks) |
|
|
|
self.annotator = Annotator(self.im0, line_width=2) |
|
|
|
for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids): |
|
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)]) |
|
|
|
if len(self.selected_boxes) == 2: |
|
for trk_id, _ in self.selected_boxes.items(): |
|
if trk_id == track_id: |
|
self.selected_boxes[track_id] = box |
|
|
|
if len(self.selected_boxes) == 2: |
|
for trk_id, box in self.selected_boxes.items(): |
|
centroid = self.calculate_centroid(self.selected_boxes[trk_id]) |
|
self.centroids.append(centroid) |
|
|
|
distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1]) |
|
self.annotator.plot_distance_and_line( |
|
distance_m, distance_mm, self.centroids, self.line_color, self.centroid_color |
|
) |
|
|
|
self.centroids = [] |
|
|
|
if self.view_img and self.env_check: |
|
self.display_frames() |
|
|
|
return im0 |
|
|
|
def display_frames(self): |
|
"""Display frame.""" |
|
cv2.namedWindow("Ultralytics Distance Estimation") |
|
cv2.setMouseCallback("Ultralytics Distance Estimation", self.mouse_event_for_distance) |
|
cv2.imshow("Ultralytics Distance Estimation", self.im0) |
|
|
|
if cv2.waitKey(1) & 0xFF == ord("q"): |
|
return |
|
|
|
|
|
if __name__ == "__main__": |
|
DistanceCalculation() |
|
|