|
|
|
|
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
from ultralytics.utils import LOGGER, ops |
|
from ultralytics.utils.metrics import OBBMetrics, batch_probiou |
|
from ultralytics.utils.plotting import output_to_rotated_target, plot_images |
|
|
|
|
|
class OBBValidator(DetectionValidator): |
|
""" |
|
A class extending the DetectionValidator class for validation based on an Oriented Bounding Box (OBB) model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.obb import OBBValidator |
|
|
|
args = dict(model='yolov8n-obb.pt', data='dota8.yaml') |
|
validator = OBBValidator(args=args) |
|
validator(model=args['model']) |
|
``` |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
"""Initialize OBBValidator and set task to 'obb', metrics to OBBMetrics.""" |
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks) |
|
self.args.task = "obb" |
|
self.metrics = OBBMetrics(save_dir=self.save_dir, plot=True, on_plot=self.on_plot) |
|
|
|
def init_metrics(self, model): |
|
"""Initialize evaluation metrics for YOLO.""" |
|
super().init_metrics(model) |
|
val = self.data.get(self.args.split, "") |
|
self.is_dota = isinstance(val, str) and "DOTA" in val |
|
|
|
def postprocess(self, preds): |
|
"""Apply Non-maximum suppression to prediction outputs.""" |
|
return ops.non_max_suppression( |
|
preds, |
|
self.args.conf, |
|
self.args.iou, |
|
labels=self.lb, |
|
nc=self.nc, |
|
multi_label=True, |
|
agnostic=self.args.single_cls, |
|
max_det=self.args.max_det, |
|
rotated=True, |
|
) |
|
|
|
def _process_batch(self, detections, gt_bboxes, gt_cls): |
|
""" |
|
Return correct prediction matrix. |
|
|
|
Args: |
|
detections (torch.Tensor): Tensor of shape [N, 7] representing detections. |
|
Each detection is of the format: x1, y1, x2, y2, conf, class, angle. |
|
gt_bboxes (torch.Tensor): Tensor of shape [M, 5] representing rotated boxes. |
|
Each box is of the format: x1, y1, x2, y2, angle. |
|
labels (torch.Tensor): Tensor of shape [M] representing labels. |
|
|
|
Returns: |
|
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels. |
|
""" |
|
iou = batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -1:]], dim=-1)) |
|
return self.match_predictions(detections[:, 5], gt_cls, iou) |
|
|
|
def _prepare_batch(self, si, batch): |
|
"""Prepares and returns a batch for OBB validation.""" |
|
idx = batch["batch_idx"] == si |
|
cls = batch["cls"][idx].squeeze(-1) |
|
bbox = batch["bboxes"][idx] |
|
ori_shape = batch["ori_shape"][si] |
|
imgsz = batch["img"].shape[2:] |
|
ratio_pad = batch["ratio_pad"][si] |
|
if len(cls): |
|
bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) |
|
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad, xywh=True) |
|
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad) |
|
|
|
def _prepare_pred(self, pred, pbatch): |
|
"""Prepares and returns a batch for OBB validation with scaled and padded bounding boxes.""" |
|
predn = pred.clone() |
|
ops.scale_boxes( |
|
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"], xywh=True |
|
) |
|
return predn |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots predicted bounding boxes on input images and saves the result.""" |
|
plot_images( |
|
batch["img"], |
|
*output_to_rotated_target(preds, max_det=self.args.max_det), |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg", |
|
names=self.names, |
|
on_plot=self.on_plot, |
|
) |
|
|
|
def pred_to_json(self, predn, filename): |
|
"""Serialize YOLO predictions to COCO json format.""" |
|
stem = Path(filename).stem |
|
image_id = int(stem) if stem.isnumeric() else stem |
|
rbox = torch.cat([predn[:, :4], predn[:, -1:]], dim=-1) |
|
poly = ops.xywhr2xyxyxyxy(rbox).view(-1, 8) |
|
for i, (r, b) in enumerate(zip(rbox.tolist(), poly.tolist())): |
|
self.jdict.append( |
|
{ |
|
"image_id": image_id, |
|
"category_id": self.class_map[int(predn[i, 5].item())], |
|
"score": round(predn[i, 4].item(), 5), |
|
"rbox": [round(x, 3) for x in r], |
|
"poly": [round(x, 3) for x in b], |
|
} |
|
) |
|
|
|
def save_one_txt(self, predn, save_conf, shape, file): |
|
"""Save YOLO detections to a txt file in normalized coordinates in a specific format.""" |
|
gn = torch.tensor(shape)[[1, 0]] |
|
for *xywh, conf, cls, angle in predn.tolist(): |
|
xywha = torch.tensor([*xywh, angle]).view(1, 5) |
|
xyxyxyxy = (ops.xywhr2xyxyxyxy(xywha) / gn).view(-1).tolist() |
|
line = (cls, *xyxyxyxy, conf) if save_conf else (cls, *xyxyxyxy) |
|
with open(file, "a") as f: |
|
f.write(("%g " * len(line)).rstrip() % line + "\n") |
|
|
|
def eval_json(self, stats): |
|
"""Evaluates YOLO output in JSON format and returns performance statistics.""" |
|
if self.args.save_json and self.is_dota and len(self.jdict): |
|
import json |
|
import re |
|
from collections import defaultdict |
|
|
|
pred_json = self.save_dir / "predictions.json" |
|
pred_txt = self.save_dir / "predictions_txt" |
|
pred_txt.mkdir(parents=True, exist_ok=True) |
|
data = json.load(open(pred_json)) |
|
|
|
LOGGER.info(f"Saving predictions with DOTA format to {pred_txt}...") |
|
for d in data: |
|
image_id = d["image_id"] |
|
score = d["score"] |
|
classname = self.names[d["category_id"]].replace(" ", "-") |
|
p = d["poly"] |
|
|
|
with open(f'{pred_txt / f"Task1_{classname}"}.txt', "a") as f: |
|
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n") |
|
|
|
|
|
pred_merged_txt = self.save_dir / "predictions_merged_txt" |
|
pred_merged_txt.mkdir(parents=True, exist_ok=True) |
|
merged_results = defaultdict(list) |
|
LOGGER.info(f"Saving merged predictions with DOTA format to {pred_merged_txt}...") |
|
for d in data: |
|
image_id = d["image_id"].split("__")[0] |
|
pattern = re.compile(r"\d+___\d+") |
|
x, y = (int(c) for c in re.findall(pattern, d["image_id"])[0].split("___")) |
|
bbox, score, cls = d["rbox"], d["score"], d["category_id"] |
|
bbox[0] += x |
|
bbox[1] += y |
|
bbox.extend([score, cls]) |
|
merged_results[image_id].append(bbox) |
|
for image_id, bbox in merged_results.items(): |
|
bbox = torch.tensor(bbox) |
|
max_wh = torch.max(bbox[:, :2]).item() * 2 |
|
c = bbox[:, 6:7] * max_wh |
|
scores = bbox[:, 5] |
|
b = bbox[:, :5].clone() |
|
b[:, :2] += c |
|
|
|
i = ops.nms_rotated(b, scores, 0.3) |
|
bbox = bbox[i] |
|
|
|
b = ops.xywhr2xyxyxyxy(bbox[:, :5]).view(-1, 8) |
|
for x in torch.cat([b, bbox[:, 5:7]], dim=-1).tolist(): |
|
classname = self.names[int(x[-1])].replace(" ", "-") |
|
p = [round(i, 3) for i in x[:-2]] |
|
score = round(x[-2], 3) |
|
|
|
with open(f'{pred_merged_txt / f"Task1_{classname}"}.txt', "a") as f: |
|
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n") |
|
|
|
return stats |
|
|