|
|
|
|
|
import torch |
|
|
|
from ultralytics.data import YOLODataset |
|
from ultralytics.data.augment import Compose, Format, v8_transforms |
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
from ultralytics.utils import colorstr, ops |
|
|
|
__all__ = ("RTDETRValidator",) |
|
|
|
|
|
class RTDETRDataset(YOLODataset): |
|
""" |
|
Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class. |
|
|
|
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for |
|
real-time detection and tracking tasks. |
|
""" |
|
|
|
def __init__(self, *args, data=None, **kwargs): |
|
"""Initialize the RTDETRDataset class by inheriting from the YOLODataset class.""" |
|
super().__init__(*args, data=data, **kwargs) |
|
|
|
|
|
def load_image(self, i, rect_mode=False): |
|
"""Loads 1 image from dataset index 'i', returns (im, resized hw).""" |
|
return super().load_image(i=i, rect_mode=rect_mode) |
|
|
|
def build_transforms(self, hyp=None): |
|
"""Temporary, only for evaluation.""" |
|
if self.augment: |
|
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 |
|
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 |
|
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True) |
|
else: |
|
|
|
transforms = Compose([]) |
|
transforms.append( |
|
Format( |
|
bbox_format="xywh", |
|
normalize=True, |
|
return_mask=self.use_segments, |
|
return_keypoint=self.use_keypoints, |
|
batch_idx=True, |
|
mask_ratio=hyp.mask_ratio, |
|
mask_overlap=hyp.overlap_mask, |
|
) |
|
) |
|
return transforms |
|
|
|
|
|
class RTDETRValidator(DetectionValidator): |
|
""" |
|
RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for |
|
the RT-DETR (Real-Time DETR) object detection model. |
|
|
|
The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for |
|
post-processing, and updates evaluation metrics accordingly. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.rtdetr import RTDETRValidator |
|
|
|
args = dict(model='rtdetr-l.pt', data='coco8.yaml') |
|
validator = RTDETRValidator(args=args) |
|
validator() |
|
``` |
|
|
|
Note: |
|
For further details on the attributes and methods, refer to the parent DetectionValidator class. |
|
""" |
|
|
|
def build_dataset(self, img_path, mode="val", batch=None): |
|
""" |
|
Build an RTDETR Dataset. |
|
|
|
Args: |
|
img_path (str): Path to the folder containing images. |
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. |
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. |
|
""" |
|
return RTDETRDataset( |
|
img_path=img_path, |
|
imgsz=self.args.imgsz, |
|
batch_size=batch, |
|
augment=False, |
|
hyp=self.args, |
|
rect=False, |
|
cache=self.args.cache or None, |
|
prefix=colorstr(f"{mode}: "), |
|
data=self.data, |
|
) |
|
|
|
def postprocess(self, preds): |
|
"""Apply Non-maximum suppression to prediction outputs.""" |
|
if not isinstance(preds, (list, tuple)): |
|
preds = [preds, None] |
|
|
|
bs, _, nd = preds[0].shape |
|
bboxes, scores = preds[0].split((4, nd - 4), dim=-1) |
|
bboxes *= self.args.imgsz |
|
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs |
|
for i, bbox in enumerate(bboxes): |
|
bbox = ops.xywh2xyxy(bbox) |
|
score, cls = scores[i].max(-1) |
|
|
|
|
|
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) |
|
|
|
pred = pred[score.argsort(descending=True)] |
|
outputs[i] = pred |
|
|
|
return outputs |
|
|
|
def _prepare_batch(self, si, batch): |
|
"""Prepares a batch for training or inference by applying transformations.""" |
|
idx = batch["batch_idx"] == si |
|
cls = batch["cls"][idx].squeeze(-1) |
|
bbox = batch["bboxes"][idx] |
|
ori_shape = batch["ori_shape"][si] |
|
imgsz = batch["img"].shape[2:] |
|
ratio_pad = batch["ratio_pad"][si] |
|
if len(cls): |
|
bbox = ops.xywh2xyxy(bbox) |
|
bbox[..., [0, 2]] *= ori_shape[1] |
|
bbox[..., [1, 3]] *= ori_shape[0] |
|
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad) |
|
|
|
def _prepare_pred(self, pred, pbatch): |
|
"""Prepares and returns a batch with transformed bounding boxes and class labels.""" |
|
predn = pred.clone() |
|
predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz |
|
predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz |
|
return predn.float() |
|
|