|
|
|
|
|
import torch |
|
|
|
from ultralytics.data.augment import LetterBox |
|
from ultralytics.engine.predictor import BasePredictor |
|
from ultralytics.engine.results import Results |
|
from ultralytics.utils import ops |
|
|
|
|
|
class RTDETRPredictor(BasePredictor): |
|
""" |
|
RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions using |
|
Baidu's RT-DETR model. |
|
|
|
This class leverages the power of Vision Transformers to provide real-time object detection while maintaining |
|
high accuracy. It supports key features like efficient hybrid encoding and IoU-aware query selection. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils import ASSETS |
|
from ultralytics.models.rtdetr import RTDETRPredictor |
|
|
|
args = dict(model='rtdetr-l.pt', source=ASSETS) |
|
predictor = RTDETRPredictor(overrides=args) |
|
predictor.predict_cli() |
|
``` |
|
|
|
Attributes: |
|
imgsz (int): Image size for inference (must be square and scale-filled). |
|
args (dict): Argument overrides for the predictor. |
|
""" |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
""" |
|
Postprocess the raw predictions from the model to generate bounding boxes and confidence scores. |
|
|
|
The method filters detections based on confidence and class if specified in `self.args`. |
|
|
|
Args: |
|
preds (list): List of [predictions, extra] from the model. |
|
img (torch.Tensor): Processed input images. |
|
orig_imgs (list or torch.Tensor): Original, unprocessed images. |
|
|
|
Returns: |
|
(list[Results]): A list of Results objects containing the post-processed bounding boxes, confidence scores, |
|
and class labels. |
|
""" |
|
if not isinstance(preds, (list, tuple)): |
|
preds = [preds, None] |
|
|
|
nd = preds[0].shape[-1] |
|
bboxes, scores = preds[0].split((4, nd - 4), dim=-1) |
|
|
|
if not isinstance(orig_imgs, list): |
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) |
|
|
|
results = [] |
|
for i, bbox in enumerate(bboxes): |
|
bbox = ops.xywh2xyxy(bbox) |
|
score, cls = scores[i].max(-1, keepdim=True) |
|
idx = score.squeeze(-1) > self.args.conf |
|
if self.args.classes is not None: |
|
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx |
|
pred = torch.cat([bbox, score, cls], dim=-1)[idx] |
|
orig_img = orig_imgs[i] |
|
oh, ow = orig_img.shape[:2] |
|
pred[..., [0, 2]] *= ow |
|
pred[..., [1, 3]] *= oh |
|
img_path = self.batch[0][i] |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) |
|
return results |
|
|
|
def pre_transform(self, im): |
|
""" |
|
Pre-transforms the input images before feeding them into the model for inference. The input images are |
|
letterboxed to ensure a square aspect ratio and scale-filled. The size must be square(640) and scaleFilled. |
|
|
|
Args: |
|
im (list[np.ndarray] |torch.Tensor): Input images of shape (N,3,h,w) for tensor, [(h,w,3) x N] for list. |
|
|
|
Returns: |
|
(list): List of pre-transformed images ready for model inference. |
|
""" |
|
letterbox = LetterBox(self.imgsz, auto=False, scaleFill=True) |
|
return [letterbox(image=x) for x in im] |
|
|