Spaces:
Paused
Paused
| """Test functions for 1D array set operations. | |
| """ | |
| import numpy as np | |
| from numpy.testing import (assert_array_equal, assert_equal, | |
| assert_raises, assert_raises_regex) | |
| from numpy.lib.arraysetops import ( | |
| ediff1d, intersect1d, setxor1d, union1d, setdiff1d, unique, in1d, isin | |
| ) | |
| import pytest | |
| class TestSetOps: | |
| def test_intersect1d(self): | |
| # unique inputs | |
| a = np.array([5, 7, 1, 2]) | |
| b = np.array([2, 4, 3, 1, 5]) | |
| ec = np.array([1, 2, 5]) | |
| c = intersect1d(a, b, assume_unique=True) | |
| assert_array_equal(c, ec) | |
| # non-unique inputs | |
| a = np.array([5, 5, 7, 1, 2]) | |
| b = np.array([2, 1, 4, 3, 3, 1, 5]) | |
| ed = np.array([1, 2, 5]) | |
| c = intersect1d(a, b) | |
| assert_array_equal(c, ed) | |
| assert_array_equal([], intersect1d([], [])) | |
| def test_intersect1d_array_like(self): | |
| # See gh-11772 | |
| class Test: | |
| def __array__(self): | |
| return np.arange(3) | |
| a = Test() | |
| res = intersect1d(a, a) | |
| assert_array_equal(res, a) | |
| res = intersect1d([1, 2, 3], [1, 2, 3]) | |
| assert_array_equal(res, [1, 2, 3]) | |
| def test_intersect1d_indices(self): | |
| # unique inputs | |
| a = np.array([1, 2, 3, 4]) | |
| b = np.array([2, 1, 4, 6]) | |
| c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) | |
| ee = np.array([1, 2, 4]) | |
| assert_array_equal(c, ee) | |
| assert_array_equal(a[i1], ee) | |
| assert_array_equal(b[i2], ee) | |
| # non-unique inputs | |
| a = np.array([1, 2, 2, 3, 4, 3, 2]) | |
| b = np.array([1, 8, 4, 2, 2, 3, 2, 3]) | |
| c, i1, i2 = intersect1d(a, b, return_indices=True) | |
| ef = np.array([1, 2, 3, 4]) | |
| assert_array_equal(c, ef) | |
| assert_array_equal(a[i1], ef) | |
| assert_array_equal(b[i2], ef) | |
| # non1d, unique inputs | |
| a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) | |
| b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) | |
| c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) | |
| ui1 = np.unravel_index(i1, a.shape) | |
| ui2 = np.unravel_index(i2, b.shape) | |
| ea = np.array([2, 6, 7, 8]) | |
| assert_array_equal(ea, a[ui1]) | |
| assert_array_equal(ea, b[ui2]) | |
| # non1d, not assumed to be uniqueinputs | |
| a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) | |
| b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) | |
| c, i1, i2 = intersect1d(a, b, return_indices=True) | |
| ui1 = np.unravel_index(i1, a.shape) | |
| ui2 = np.unravel_index(i2, b.shape) | |
| ea = np.array([2, 7, 8]) | |
| assert_array_equal(ea, a[ui1]) | |
| assert_array_equal(ea, b[ui2]) | |
| def test_setxor1d(self): | |
| a = np.array([5, 7, 1, 2]) | |
| b = np.array([2, 4, 3, 1, 5]) | |
| ec = np.array([3, 4, 7]) | |
| c = setxor1d(a, b) | |
| assert_array_equal(c, ec) | |
| a = np.array([1, 2, 3]) | |
| b = np.array([6, 5, 4]) | |
| ec = np.array([1, 2, 3, 4, 5, 6]) | |
| c = setxor1d(a, b) | |
| assert_array_equal(c, ec) | |
| a = np.array([1, 8, 2, 3]) | |
| b = np.array([6, 5, 4, 8]) | |
| ec = np.array([1, 2, 3, 4, 5, 6]) | |
| c = setxor1d(a, b) | |
| assert_array_equal(c, ec) | |
| assert_array_equal([], setxor1d([], [])) | |
| def test_ediff1d(self): | |
| zero_elem = np.array([]) | |
| one_elem = np.array([1]) | |
| two_elem = np.array([1, 2]) | |
| assert_array_equal([], ediff1d(zero_elem)) | |
| assert_array_equal([0], ediff1d(zero_elem, to_begin=0)) | |
| assert_array_equal([0], ediff1d(zero_elem, to_end=0)) | |
| assert_array_equal([-1, 0], ediff1d(zero_elem, to_begin=-1, to_end=0)) | |
| assert_array_equal([], ediff1d(one_elem)) | |
| assert_array_equal([1], ediff1d(two_elem)) | |
| assert_array_equal([7, 1, 9], ediff1d(two_elem, to_begin=7, to_end=9)) | |
| assert_array_equal([5, 6, 1, 7, 8], | |
| ediff1d(two_elem, to_begin=[5, 6], to_end=[7, 8])) | |
| assert_array_equal([1, 9], ediff1d(two_elem, to_end=9)) | |
| assert_array_equal([1, 7, 8], ediff1d(two_elem, to_end=[7, 8])) | |
| assert_array_equal([7, 1], ediff1d(two_elem, to_begin=7)) | |
| assert_array_equal([5, 6, 1], ediff1d(two_elem, to_begin=[5, 6])) | |
| def test_ediff1d_forbidden_type_casts(self, ary, prepend, append, expected): | |
| # verify resolution of gh-11490 | |
| # specifically, raise an appropriate | |
| # Exception when attempting to append or | |
| # prepend with an incompatible type | |
| msg = 'dtype of `{}` must be compatible'.format(expected) | |
| with assert_raises_regex(TypeError, msg): | |
| ediff1d(ary=ary, | |
| to_end=append, | |
| to_begin=prepend) | |
| def test_ediff1d_scalar_handling(self, | |
| ary, | |
| prepend, | |
| append, | |
| expected): | |
| # maintain backwards-compatibility | |
| # of scalar prepend / append behavior | |
| # in ediff1d following fix for gh-11490 | |
| actual = np.ediff1d(ary=ary, | |
| to_end=append, | |
| to_begin=prepend) | |
| assert_equal(actual, expected) | |
| assert actual.dtype == expected.dtype | |
| def test_isin(self): | |
| # the tests for in1d cover most of isin's behavior | |
| # if in1d is removed, would need to change those tests to test | |
| # isin instead. | |
| def _isin_slow(a, b): | |
| b = np.asarray(b).flatten().tolist() | |
| return a in b | |
| isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1}) | |
| def assert_isin_equal(a, b): | |
| x = isin(a, b) | |
| y = isin_slow(a, b) | |
| assert_array_equal(x, y) | |
| # multidimensional arrays in both arguments | |
| a = np.arange(24).reshape([2, 3, 4]) | |
| b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]]) | |
| assert_isin_equal(a, b) | |
| # array-likes as both arguments | |
| c = [(9, 8), (7, 6)] | |
| d = (9, 7) | |
| assert_isin_equal(c, d) | |
| # zero-d array: | |
| f = np.array(3) | |
| assert_isin_equal(f, b) | |
| assert_isin_equal(a, f) | |
| assert_isin_equal(f, f) | |
| # scalar: | |
| assert_isin_equal(5, b) | |
| assert_isin_equal(a, 6) | |
| assert_isin_equal(5, 6) | |
| # empty array-like: | |
| x = [] | |
| assert_isin_equal(x, b) | |
| assert_isin_equal(a, x) | |
| assert_isin_equal(x, x) | |
| def test_in1d(self): | |
| # we use two different sizes for the b array here to test the | |
| # two different paths in in1d(). | |
| for mult in (1, 10): | |
| # One check without np.array to make sure lists are handled correct | |
| a = [5, 7, 1, 2] | |
| b = [2, 4, 3, 1, 5] * mult | |
| ec = np.array([True, False, True, True]) | |
| c = in1d(a, b, assume_unique=True) | |
| assert_array_equal(c, ec) | |
| a[0] = 8 | |
| ec = np.array([False, False, True, True]) | |
| c = in1d(a, b, assume_unique=True) | |
| assert_array_equal(c, ec) | |
| a[0], a[3] = 4, 8 | |
| ec = np.array([True, False, True, False]) | |
| c = in1d(a, b, assume_unique=True) | |
| assert_array_equal(c, ec) | |
| a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) | |
| b = [2, 3, 4] * mult | |
| ec = [False, True, False, True, True, True, True, True, True, | |
| False, True, False, False, False] | |
| c = in1d(a, b) | |
| assert_array_equal(c, ec) | |
| b = b + [5, 5, 4] * mult | |
| ec = [True, True, True, True, True, True, True, True, True, True, | |
| True, False, True, True] | |
| c = in1d(a, b) | |
| assert_array_equal(c, ec) | |
| a = np.array([5, 7, 1, 2]) | |
| b = np.array([2, 4, 3, 1, 5] * mult) | |
| ec = np.array([True, False, True, True]) | |
| c = in1d(a, b) | |
| assert_array_equal(c, ec) | |
| a = np.array([5, 7, 1, 1, 2]) | |
| b = np.array([2, 4, 3, 3, 1, 5] * mult) | |
| ec = np.array([True, False, True, True, True]) | |
| c = in1d(a, b) | |
| assert_array_equal(c, ec) | |
| a = np.array([5, 5]) | |
| b = np.array([2, 2] * mult) | |
| ec = np.array([False, False]) | |
| c = in1d(a, b) | |
| assert_array_equal(c, ec) | |
| a = np.array([5]) | |
| b = np.array([2]) | |
| ec = np.array([False]) | |
| c = in1d(a, b) | |
| assert_array_equal(c, ec) | |
| assert_array_equal(in1d([], []), []) | |
| def test_in1d_char_array(self): | |
| a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b']) | |
| b = np.array(['a', 'c']) | |
| ec = np.array([True, False, True, False, False, True, False, False]) | |
| c = in1d(a, b) | |
| assert_array_equal(c, ec) | |
| def test_in1d_invert(self): | |
| "Test in1d's invert parameter" | |
| # We use two different sizes for the b array here to test the | |
| # two different paths in in1d(). | |
| for mult in (1, 10): | |
| a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) | |
| b = [2, 3, 4] * mult | |
| assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) | |
| def test_in1d_ravel(self): | |
| # Test that in1d ravels its input arrays. This is not documented | |
| # behavior however. The test is to ensure consistentency. | |
| a = np.arange(6).reshape(2, 3) | |
| b = np.arange(3, 9).reshape(3, 2) | |
| long_b = np.arange(3, 63).reshape(30, 2) | |
| ec = np.array([False, False, False, True, True, True]) | |
| assert_array_equal(in1d(a, b, assume_unique=True), ec) | |
| assert_array_equal(in1d(a, b, assume_unique=False), ec) | |
| assert_array_equal(in1d(a, long_b, assume_unique=True), ec) | |
| assert_array_equal(in1d(a, long_b, assume_unique=False), ec) | |
| def test_in1d_first_array_is_object(self): | |
| ar1 = [None] | |
| ar2 = np.array([1]*10) | |
| expected = np.array([False]) | |
| result = np.in1d(ar1, ar2) | |
| assert_array_equal(result, expected) | |
| def test_in1d_second_array_is_object(self): | |
| ar1 = 1 | |
| ar2 = np.array([None]*10) | |
| expected = np.array([False]) | |
| result = np.in1d(ar1, ar2) | |
| assert_array_equal(result, expected) | |
| def test_in1d_both_arrays_are_object(self): | |
| ar1 = [None] | |
| ar2 = np.array([None]*10) | |
| expected = np.array([True]) | |
| result = np.in1d(ar1, ar2) | |
| assert_array_equal(result, expected) | |
| def test_in1d_both_arrays_have_structured_dtype(self): | |
| # Test arrays of a structured data type containing an integer field | |
| # and a field of dtype `object` allowing for arbitrary Python objects | |
| dt = np.dtype([('field1', int), ('field2', object)]) | |
| ar1 = np.array([(1, None)], dtype=dt) | |
| ar2 = np.array([(1, None)]*10, dtype=dt) | |
| expected = np.array([True]) | |
| result = np.in1d(ar1, ar2) | |
| assert_array_equal(result, expected) | |
| def test_in1d_with_arrays_containing_tuples(self): | |
| ar1 = np.array([(1,), 2], dtype=object) | |
| ar2 = np.array([(1,), 2], dtype=object) | |
| expected = np.array([True, True]) | |
| result = np.in1d(ar1, ar2) | |
| assert_array_equal(result, expected) | |
| result = np.in1d(ar1, ar2, invert=True) | |
| assert_array_equal(result, np.invert(expected)) | |
| # An integer is added at the end of the array to make sure | |
| # that the array builder will create the array with tuples | |
| # and after it's created the integer is removed. | |
| # There's a bug in the array constructor that doesn't handle | |
| # tuples properly and adding the integer fixes that. | |
| ar1 = np.array([(1,), (2, 1), 1], dtype=object) | |
| ar1 = ar1[:-1] | |
| ar2 = np.array([(1,), (2, 1), 1], dtype=object) | |
| ar2 = ar2[:-1] | |
| expected = np.array([True, True]) | |
| result = np.in1d(ar1, ar2) | |
| assert_array_equal(result, expected) | |
| result = np.in1d(ar1, ar2, invert=True) | |
| assert_array_equal(result, np.invert(expected)) | |
| ar1 = np.array([(1,), (2, 3), 1], dtype=object) | |
| ar1 = ar1[:-1] | |
| ar2 = np.array([(1,), 2], dtype=object) | |
| expected = np.array([True, False]) | |
| result = np.in1d(ar1, ar2) | |
| assert_array_equal(result, expected) | |
| result = np.in1d(ar1, ar2, invert=True) | |
| assert_array_equal(result, np.invert(expected)) | |
| def test_union1d(self): | |
| a = np.array([5, 4, 7, 1, 2]) | |
| b = np.array([2, 4, 3, 3, 2, 1, 5]) | |
| ec = np.array([1, 2, 3, 4, 5, 7]) | |
| c = union1d(a, b) | |
| assert_array_equal(c, ec) | |
| # Tests gh-10340, arguments to union1d should be | |
| # flattened if they are not already 1D | |
| x = np.array([[0, 1, 2], [3, 4, 5]]) | |
| y = np.array([0, 1, 2, 3, 4]) | |
| ez = np.array([0, 1, 2, 3, 4, 5]) | |
| z = union1d(x, y) | |
| assert_array_equal(z, ez) | |
| assert_array_equal([], union1d([], [])) | |
| def test_setdiff1d(self): | |
| a = np.array([6, 5, 4, 7, 1, 2, 7, 4]) | |
| b = np.array([2, 4, 3, 3, 2, 1, 5]) | |
| ec = np.array([6, 7]) | |
| c = setdiff1d(a, b) | |
| assert_array_equal(c, ec) | |
| a = np.arange(21) | |
| b = np.arange(19) | |
| ec = np.array([19, 20]) | |
| c = setdiff1d(a, b) | |
| assert_array_equal(c, ec) | |
| assert_array_equal([], setdiff1d([], [])) | |
| a = np.array((), np.uint32) | |
| assert_equal(setdiff1d(a, []).dtype, np.uint32) | |
| def test_setdiff1d_unique(self): | |
| a = np.array([3, 2, 1]) | |
| b = np.array([7, 5, 2]) | |
| expected = np.array([3, 1]) | |
| actual = setdiff1d(a, b, assume_unique=True) | |
| assert_equal(actual, expected) | |
| def test_setdiff1d_char_array(self): | |
| a = np.array(['a', 'b', 'c']) | |
| b = np.array(['a', 'b', 's']) | |
| assert_array_equal(setdiff1d(a, b), np.array(['c'])) | |
| def test_manyways(self): | |
| a = np.array([5, 7, 1, 2, 8]) | |
| b = np.array([9, 8, 2, 4, 3, 1, 5]) | |
| c1 = setxor1d(a, b) | |
| aux1 = intersect1d(a, b) | |
| aux2 = union1d(a, b) | |
| c2 = setdiff1d(aux2, aux1) | |
| assert_array_equal(c1, c2) | |
| class TestUnique: | |
| def test_unique_1d(self): | |
| def check_all(a, b, i1, i2, c, dt): | |
| base_msg = 'check {0} failed for type {1}' | |
| msg = base_msg.format('values', dt) | |
| v = unique(a) | |
| assert_array_equal(v, b, msg) | |
| msg = base_msg.format('return_index', dt) | |
| v, j = unique(a, True, False, False) | |
| assert_array_equal(v, b, msg) | |
| assert_array_equal(j, i1, msg) | |
| msg = base_msg.format('return_inverse', dt) | |
| v, j = unique(a, False, True, False) | |
| assert_array_equal(v, b, msg) | |
| assert_array_equal(j, i2, msg) | |
| msg = base_msg.format('return_counts', dt) | |
| v, j = unique(a, False, False, True) | |
| assert_array_equal(v, b, msg) | |
| assert_array_equal(j, c, msg) | |
| msg = base_msg.format('return_index and return_inverse', dt) | |
| v, j1, j2 = unique(a, True, True, False) | |
| assert_array_equal(v, b, msg) | |
| assert_array_equal(j1, i1, msg) | |
| assert_array_equal(j2, i2, msg) | |
| msg = base_msg.format('return_index and return_counts', dt) | |
| v, j1, j2 = unique(a, True, False, True) | |
| assert_array_equal(v, b, msg) | |
| assert_array_equal(j1, i1, msg) | |
| assert_array_equal(j2, c, msg) | |
| msg = base_msg.format('return_inverse and return_counts', dt) | |
| v, j1, j2 = unique(a, False, True, True) | |
| assert_array_equal(v, b, msg) | |
| assert_array_equal(j1, i2, msg) | |
| assert_array_equal(j2, c, msg) | |
| msg = base_msg.format(('return_index, return_inverse ' | |
| 'and return_counts'), dt) | |
| v, j1, j2, j3 = unique(a, True, True, True) | |
| assert_array_equal(v, b, msg) | |
| assert_array_equal(j1, i1, msg) | |
| assert_array_equal(j2, i2, msg) | |
| assert_array_equal(j3, c, msg) | |
| a = [5, 7, 1, 2, 1, 5, 7]*10 | |
| b = [1, 2, 5, 7] | |
| i1 = [2, 3, 0, 1] | |
| i2 = [2, 3, 0, 1, 0, 2, 3]*10 | |
| c = np.multiply([2, 1, 2, 2], 10) | |
| # test for numeric arrays | |
| types = [] | |
| types.extend(np.typecodes['AllInteger']) | |
| types.extend(np.typecodes['AllFloat']) | |
| types.append('datetime64[D]') | |
| types.append('timedelta64[D]') | |
| for dt in types: | |
| aa = np.array(a, dt) | |
| bb = np.array(b, dt) | |
| check_all(aa, bb, i1, i2, c, dt) | |
| # test for object arrays | |
| dt = 'O' | |
| aa = np.empty(len(a), dt) | |
| aa[:] = a | |
| bb = np.empty(len(b), dt) | |
| bb[:] = b | |
| check_all(aa, bb, i1, i2, c, dt) | |
| # test for structured arrays | |
| dt = [('', 'i'), ('', 'i')] | |
| aa = np.array(list(zip(a, a)), dt) | |
| bb = np.array(list(zip(b, b)), dt) | |
| check_all(aa, bb, i1, i2, c, dt) | |
| # test for ticket #2799 | |
| aa = [1. + 0.j, 1 - 1.j, 1] | |
| assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j]) | |
| # test for ticket #4785 | |
| a = [(1, 2), (1, 2), (2, 3)] | |
| unq = [1, 2, 3] | |
| inv = [0, 1, 0, 1, 1, 2] | |
| a1 = unique(a) | |
| assert_array_equal(a1, unq) | |
| a2, a2_inv = unique(a, return_inverse=True) | |
| assert_array_equal(a2, unq) | |
| assert_array_equal(a2_inv, inv) | |
| # test for chararrays with return_inverse (gh-5099) | |
| a = np.chararray(5) | |
| a[...] = '' | |
| a2, a2_inv = np.unique(a, return_inverse=True) | |
| assert_array_equal(a2_inv, np.zeros(5)) | |
| # test for ticket #9137 | |
| a = [] | |
| a1_idx = np.unique(a, return_index=True)[1] | |
| a2_inv = np.unique(a, return_inverse=True)[1] | |
| a3_idx, a3_inv = np.unique(a, return_index=True, | |
| return_inverse=True)[1:] | |
| assert_equal(a1_idx.dtype, np.intp) | |
| assert_equal(a2_inv.dtype, np.intp) | |
| assert_equal(a3_idx.dtype, np.intp) | |
| assert_equal(a3_inv.dtype, np.intp) | |
| # test for ticket 2111 - float | |
| a = [2.0, np.nan, 1.0, np.nan] | |
| ua = [1.0, 2.0, np.nan] | |
| ua_idx = [2, 0, 1] | |
| ua_inv = [1, 2, 0, 2] | |
| ua_cnt = [1, 1, 2] | |
| assert_equal(np.unique(a), ua) | |
| assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) | |
| assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) | |
| assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) | |
| # test for ticket 2111 - complex | |
| a = [2.0-1j, np.nan, 1.0+1j, complex(0.0, np.nan), complex(1.0, np.nan)] | |
| ua = [1.0+1j, 2.0-1j, complex(0.0, np.nan)] | |
| ua_idx = [2, 0, 3] | |
| ua_inv = [1, 2, 0, 2, 2] | |
| ua_cnt = [1, 1, 3] | |
| assert_equal(np.unique(a), ua) | |
| assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) | |
| assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) | |
| assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) | |
| # test for ticket 2111 - datetime64 | |
| nat = np.datetime64('nat') | |
| a = [np.datetime64('2020-12-26'), nat, np.datetime64('2020-12-24'), nat] | |
| ua = [np.datetime64('2020-12-24'), np.datetime64('2020-12-26'), nat] | |
| ua_idx = [2, 0, 1] | |
| ua_inv = [1, 2, 0, 2] | |
| ua_cnt = [1, 1, 2] | |
| assert_equal(np.unique(a), ua) | |
| assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) | |
| assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) | |
| assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) | |
| # test for ticket 2111 - timedelta | |
| nat = np.timedelta64('nat') | |
| a = [np.timedelta64(1, 'D'), nat, np.timedelta64(1, 'h'), nat] | |
| ua = [np.timedelta64(1, 'h'), np.timedelta64(1, 'D'), nat] | |
| ua_idx = [2, 0, 1] | |
| ua_inv = [1, 2, 0, 2] | |
| ua_cnt = [1, 1, 2] | |
| assert_equal(np.unique(a), ua) | |
| assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) | |
| assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) | |
| assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) | |
| # test for gh-19300 | |
| all_nans = [np.nan] * 4 | |
| ua = [np.nan] | |
| ua_idx = [0] | |
| ua_inv = [0, 0, 0, 0] | |
| ua_cnt = [4] | |
| assert_equal(np.unique(all_nans), ua) | |
| assert_equal(np.unique(all_nans, return_index=True), (ua, ua_idx)) | |
| assert_equal(np.unique(all_nans, return_inverse=True), (ua, ua_inv)) | |
| assert_equal(np.unique(all_nans, return_counts=True), (ua, ua_cnt)) | |
| def test_unique_axis_errors(self): | |
| assert_raises(TypeError, self._run_axis_tests, object) | |
| assert_raises(TypeError, self._run_axis_tests, | |
| [('a', int), ('b', object)]) | |
| assert_raises(np.AxisError, unique, np.arange(10), axis=2) | |
| assert_raises(np.AxisError, unique, np.arange(10), axis=-2) | |
| def test_unique_axis_list(self): | |
| msg = "Unique failed on list of lists" | |
| inp = [[0, 1, 0], [0, 1, 0]] | |
| inp_arr = np.asarray(inp) | |
| assert_array_equal(unique(inp, axis=0), unique(inp_arr, axis=0), msg) | |
| assert_array_equal(unique(inp, axis=1), unique(inp_arr, axis=1), msg) | |
| def test_unique_axis(self): | |
| types = [] | |
| types.extend(np.typecodes['AllInteger']) | |
| types.extend(np.typecodes['AllFloat']) | |
| types.append('datetime64[D]') | |
| types.append('timedelta64[D]') | |
| types.append([('a', int), ('b', int)]) | |
| types.append([('a', int), ('b', float)]) | |
| for dtype in types: | |
| self._run_axis_tests(dtype) | |
| msg = 'Non-bitwise-equal booleans test failed' | |
| data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool) | |
| result = np.array([[False, True], [True, True]], dtype=bool) | |
| assert_array_equal(unique(data, axis=0), result, msg) | |
| msg = 'Negative zero equality test failed' | |
| data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]]) | |
| result = np.array([[-0.0, 0.0]]) | |
| assert_array_equal(unique(data, axis=0), result, msg) | |
| def test_unique_1d_with_axis(self, axis): | |
| x = np.array([4, 3, 2, 3, 2, 1, 2, 2]) | |
| uniq = unique(x, axis=axis) | |
| assert_array_equal(uniq, [1, 2, 3, 4]) | |
| def test_unique_axis_zeros(self): | |
| # issue 15559 | |
| single_zero = np.empty(shape=(2, 0), dtype=np.int8) | |
| uniq, idx, inv, cnt = unique(single_zero, axis=0, return_index=True, | |
| return_inverse=True, return_counts=True) | |
| # there's 1 element of shape (0,) along axis 0 | |
| assert_equal(uniq.dtype, single_zero.dtype) | |
| assert_array_equal(uniq, np.empty(shape=(1, 0))) | |
| assert_array_equal(idx, np.array([0])) | |
| assert_array_equal(inv, np.array([0, 0])) | |
| assert_array_equal(cnt, np.array([2])) | |
| # there's 0 elements of shape (2,) along axis 1 | |
| uniq, idx, inv, cnt = unique(single_zero, axis=1, return_index=True, | |
| return_inverse=True, return_counts=True) | |
| assert_equal(uniq.dtype, single_zero.dtype) | |
| assert_array_equal(uniq, np.empty(shape=(2, 0))) | |
| assert_array_equal(idx, np.array([])) | |
| assert_array_equal(inv, np.array([])) | |
| assert_array_equal(cnt, np.array([])) | |
| # test a "complicated" shape | |
| shape = (0, 2, 0, 3, 0, 4, 0) | |
| multiple_zeros = np.empty(shape=shape) | |
| for axis in range(len(shape)): | |
| expected_shape = list(shape) | |
| if shape[axis] == 0: | |
| expected_shape[axis] = 0 | |
| else: | |
| expected_shape[axis] = 1 | |
| assert_array_equal(unique(multiple_zeros, axis=axis), | |
| np.empty(shape=expected_shape)) | |
| def test_unique_masked(self): | |
| # issue 8664 | |
| x = np.array([64, 0, 1, 2, 3, 63, 63, 0, 0, 0, 1, 2, 0, 63, 0], | |
| dtype='uint8') | |
| y = np.ma.masked_equal(x, 0) | |
| v = np.unique(y) | |
| v2, i, c = np.unique(y, return_index=True, return_counts=True) | |
| msg = 'Unique returned different results when asked for index' | |
| assert_array_equal(v.data, v2.data, msg) | |
| assert_array_equal(v.mask, v2.mask, msg) | |
| def test_unique_sort_order_with_axis(self): | |
| # These tests fail if sorting along axis is done by treating subarrays | |
| # as unsigned byte strings. See gh-10495. | |
| fmt = "sort order incorrect for integer type '%s'" | |
| for dt in 'bhilq': | |
| a = np.array([[-1], [0]], dt) | |
| b = np.unique(a, axis=0) | |
| assert_array_equal(a, b, fmt % dt) | |
| def _run_axis_tests(self, dtype): | |
| data = np.array([[0, 1, 0, 0], | |
| [1, 0, 0, 0], | |
| [0, 1, 0, 0], | |
| [1, 0, 0, 0]]).astype(dtype) | |
| msg = 'Unique with 1d array and axis=0 failed' | |
| result = np.array([0, 1]) | |
| assert_array_equal(unique(data), result.astype(dtype), msg) | |
| msg = 'Unique with 2d array and axis=0 failed' | |
| result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]]) | |
| assert_array_equal(unique(data, axis=0), result.astype(dtype), msg) | |
| msg = 'Unique with 2d array and axis=1 failed' | |
| result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) | |
| assert_array_equal(unique(data, axis=1), result.astype(dtype), msg) | |
| msg = 'Unique with 3d array and axis=2 failed' | |
| data3d = np.array([[[1, 1], | |
| [1, 0]], | |
| [[0, 1], | |
| [0, 0]]]).astype(dtype) | |
| result = np.take(data3d, [1, 0], axis=2) | |
| assert_array_equal(unique(data3d, axis=2), result, msg) | |
| uniq, idx, inv, cnt = unique(data, axis=0, return_index=True, | |
| return_inverse=True, return_counts=True) | |
| msg = "Unique's return_index=True failed with axis=0" | |
| assert_array_equal(data[idx], uniq, msg) | |
| msg = "Unique's return_inverse=True failed with axis=0" | |
| assert_array_equal(uniq[inv], data) | |
| msg = "Unique's return_counts=True failed with axis=0" | |
| assert_array_equal(cnt, np.array([2, 2]), msg) | |
| uniq, idx, inv, cnt = unique(data, axis=1, return_index=True, | |
| return_inverse=True, return_counts=True) | |
| msg = "Unique's return_index=True failed with axis=1" | |
| assert_array_equal(data[:, idx], uniq) | |
| msg = "Unique's return_inverse=True failed with axis=1" | |
| assert_array_equal(uniq[:, inv], data) | |
| msg = "Unique's return_counts=True failed with axis=1" | |
| assert_array_equal(cnt, np.array([2, 1, 1]), msg) | |