Spaces:
Paused
Paused
"""Implementation of a space that consists of binary np.ndarrays of a fixed shape.""" | |
from typing import Optional, Sequence, Tuple, Union | |
import numpy as np | |
from gym.spaces.space import Space | |
class MultiBinary(Space[np.ndarray]): | |
"""An n-shape binary space. | |
Elements of this space are binary arrays of a shape that is fixed during construction. | |
Example Usage:: | |
>>> observation_space = MultiBinary(5) | |
>>> observation_space.sample() | |
array([0, 1, 0, 1, 0], dtype=int8) | |
>>> observation_space = MultiBinary([3, 2]) | |
>>> observation_space.sample() | |
array([[0, 0], | |
[0, 1], | |
[1, 1]], dtype=int8) | |
""" | |
def __init__( | |
self, | |
n: Union[np.ndarray, Sequence[int], int], | |
seed: Optional[Union[int, np.random.Generator]] = None, | |
): | |
"""Constructor of :class:`MultiBinary` space. | |
Args: | |
n: This will fix the shape of elements of the space. It can either be an integer (if the space is flat) | |
or some sort of sequence (tuple, list or np.ndarray) if there are multiple axes. | |
seed: Optionally, you can use this argument to seed the RNG that is used to sample from the space. | |
""" | |
if isinstance(n, (Sequence, np.ndarray)): | |
self.n = input_n = tuple(int(i) for i in n) | |
assert (np.asarray(input_n) > 0).all() # n (counts) have to be positive | |
else: | |
self.n = n = int(n) | |
input_n = (n,) | |
assert (np.asarray(input_n) > 0).all() # n (counts) have to be positive | |
super().__init__(input_n, np.int8, seed) | |
def shape(self) -> Tuple[int, ...]: | |
"""Has stricter type than gym.Space - never None.""" | |
return self._shape # type: ignore | |
def is_np_flattenable(self): | |
"""Checks whether this space can be flattened to a :class:`spaces.Box`.""" | |
return True | |
def sample(self, mask: Optional[np.ndarray] = None) -> np.ndarray: | |
"""Generates a single random sample from this space. | |
A sample is drawn by independent, fair coin tosses (one toss per binary variable of the space). | |
Args: | |
mask: An optional np.ndarray to mask samples with expected shape of ``space.shape``. | |
For mask == 0 then the samples will be 0 and mask == 1 then random samples will be generated. | |
The expected mask shape is the space shape and mask dtype is `np.int8`. | |
Returns: | |
Sampled values from space | |
""" | |
if mask is not None: | |
assert isinstance( | |
mask, np.ndarray | |
), f"The expected type of the mask is np.ndarray, actual type: {type(mask)}" | |
assert ( | |
mask.dtype == np.int8 | |
), f"The expected dtype of the mask is np.int8, actual dtype: {mask.dtype}" | |
assert ( | |
mask.shape == self.shape | |
), f"The expected shape of the mask is {self.shape}, actual shape: {mask.shape}" | |
assert np.all( | |
(mask == 0) | (mask == 1) | (mask == 2) | |
), f"All values of a mask should be 0, 1 or 2, actual values: {mask}" | |
return np.where( | |
mask == 2, | |
self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype), | |
mask.astype(self.dtype), | |
) | |
return self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype) | |
def contains(self, x) -> bool: | |
"""Return boolean specifying if x is a valid member of this space.""" | |
if isinstance(x, Sequence): | |
x = np.array(x) # Promote list to array for contains check | |
return bool( | |
isinstance(x, np.ndarray) | |
and self.shape == x.shape | |
and np.all((x == 0) | (x == 1)) | |
) | |
def to_jsonable(self, sample_n) -> list: | |
"""Convert a batch of samples from this space to a JSONable data type.""" | |
return np.array(sample_n).tolist() | |
def from_jsonable(self, sample_n) -> list: | |
"""Convert a JSONable data type to a batch of samples from this space.""" | |
return [np.asarray(sample, self.dtype) for sample in sample_n] | |
def __repr__(self) -> str: | |
"""Gives a string representation of this space.""" | |
return f"MultiBinary({self.n})" | |
def __eq__(self, other) -> bool: | |
"""Check whether `other` is equivalent to this instance.""" | |
return isinstance(other, MultiBinary) and self.n == other.n | |