Kano001's picture
Upload 462 files
864affd verified
raw
history blame
6.48 kB
import os
from pathlib import Path
from typing import Tuple, Union
from torch import Tensor
from torch.utils.data import Dataset
from torchaudio._internal import download_url_to_file
from torchaudio.datasets.utils import _extract_tar, _load_waveform
URL = "train-clean-100"
FOLDER_IN_ARCHIVE = "LibriSpeech"
SAMPLE_RATE = 16000
_DATA_SUBSETS = [
"dev-clean",
"dev-other",
"test-clean",
"test-other",
"train-clean-100",
"train-clean-360",
"train-other-500",
]
_CHECKSUMS = {
"http://www.openslr.org/resources/12/dev-clean.tar.gz": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3", # noqa: E501
"http://www.openslr.org/resources/12/dev-other.tar.gz": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365", # noqa: E501
"http://www.openslr.org/resources/12/test-clean.tar.gz": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23", # noqa: E501
"http://www.openslr.org/resources/12/test-other.tar.gz": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29", # noqa: E501
"http://www.openslr.org/resources/12/train-clean-100.tar.gz": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2", # noqa: E501
"http://www.openslr.org/resources/12/train-clean-360.tar.gz": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf", # noqa: E501
"http://www.openslr.org/resources/12/train-other-500.tar.gz": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2", # noqa: E501
}
def _download_librispeech(root, url):
base_url = "http://www.openslr.org/resources/12/"
ext_archive = ".tar.gz"
filename = url + ext_archive
archive = os.path.join(root, filename)
download_url = os.path.join(base_url, filename)
if not os.path.isfile(archive):
checksum = _CHECKSUMS.get(download_url, None)
download_url_to_file(download_url, archive, hash_prefix=checksum)
_extract_tar(archive)
def _get_librispeech_metadata(
fileid: str, root: str, folder: str, ext_audio: str, ext_txt: str
) -> Tuple[str, int, str, int, int, int]:
speaker_id, chapter_id, utterance_id = fileid.split("-")
# Get audio path and sample rate
fileid_audio = f"{speaker_id}-{chapter_id}-{utterance_id}"
filepath = os.path.join(folder, speaker_id, chapter_id, f"{fileid_audio}{ext_audio}")
# Load text
file_text = f"{speaker_id}-{chapter_id}{ext_txt}"
file_text = os.path.join(root, folder, speaker_id, chapter_id, file_text)
with open(file_text) as ft:
for line in ft:
fileid_text, transcript = line.strip().split(" ", 1)
if fileid_audio == fileid_text:
break
else:
# Translation not found
raise FileNotFoundError(f"Translation not found for {fileid_audio}")
return (
filepath,
SAMPLE_RATE,
transcript,
int(speaker_id),
int(chapter_id),
int(utterance_id),
)
class LIBRISPEECH(Dataset):
"""*LibriSpeech* :cite:`7178964` dataset.
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
url (str, optional): The URL to download the dataset from,
or the type of the dataset to dowload.
Allowed type values are ``"dev-clean"``, ``"dev-other"``, ``"test-clean"``,
``"test-other"``, ``"train-clean-100"``, ``"train-clean-360"`` and
``"train-other-500"``. (default: ``"train-clean-100"``)
folder_in_archive (str, optional):
The top-level directory of the dataset. (default: ``"LibriSpeech"``)
download (bool, optional):
Whether to download the dataset if it is not found at root path. (default: ``False``).
"""
_ext_txt = ".trans.txt"
_ext_audio = ".flac"
def __init__(
self,
root: Union[str, Path],
url: str = URL,
folder_in_archive: str = FOLDER_IN_ARCHIVE,
download: bool = False,
) -> None:
self._url = url
if url not in _DATA_SUBSETS:
raise ValueError(f"Invalid url '{url}' given; please provide one of {_DATA_SUBSETS}.")
root = os.fspath(root)
self._archive = os.path.join(root, folder_in_archive)
self._path = os.path.join(root, folder_in_archive, url)
if not os.path.isdir(self._path):
if download:
_download_librispeech(root, url)
else:
raise RuntimeError(
f"Dataset not found at {self._path}. Please set `download=True` to download the dataset."
)
self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*/*/*" + self._ext_audio))
def get_metadata(self, n: int) -> Tuple[str, int, str, int, int, int]:
"""Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform,
but otherwise returns the same fields as :py:func:`__getitem__`.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
str:
Path to audio
int:
Sample rate
str:
Transcript
int:
Speaker ID
int:
Chapter ID
int:
Utterance ID
"""
fileid = self._walker[n]
return _get_librispeech_metadata(fileid, self._archive, self._url, self._ext_audio, self._ext_txt)
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
Tensor:
Waveform
int:
Sample rate
str:
Transcript
int:
Speaker ID
int:
Chapter ID
int:
Utterance ID
"""
metadata = self.get_metadata(n)
waveform = _load_waveform(self._archive, metadata[0], metadata[1])
return (waveform,) + metadata[1:]
def __len__(self) -> int:
return len(self._walker)