File size: 10,361 Bytes
864affd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from typing import Optional, Tuple

import torch


__all__ = ["Conformer"]


def _lengths_to_padding_mask(lengths: torch.Tensor) -> torch.Tensor:
    batch_size = lengths.shape[0]
    max_length = int(torch.max(lengths).item())
    padding_mask = torch.arange(max_length, device=lengths.device, dtype=lengths.dtype).expand(
        batch_size, max_length
    ) >= lengths.unsqueeze(1)
    return padding_mask


class _ConvolutionModule(torch.nn.Module):
    r"""Conformer convolution module.



    Args:

        input_dim (int): input dimension.

        num_channels (int): number of depthwise convolution layer input channels.

        depthwise_kernel_size (int): kernel size of depthwise convolution layer.

        dropout (float, optional): dropout probability. (Default: 0.0)

        bias (bool, optional): indicates whether to add bias term to each convolution layer. (Default: ``False``)

        use_group_norm (bool, optional): use GroupNorm rather than BatchNorm. (Default: ``False``)

    """

    def __init__(

        self,

        input_dim: int,

        num_channels: int,

        depthwise_kernel_size: int,

        dropout: float = 0.0,

        bias: bool = False,

        use_group_norm: bool = False,

    ) -> None:
        super().__init__()
        if (depthwise_kernel_size - 1) % 2 != 0:
            raise ValueError("depthwise_kernel_size must be odd to achieve 'SAME' padding.")
        self.layer_norm = torch.nn.LayerNorm(input_dim)
        self.sequential = torch.nn.Sequential(
            torch.nn.Conv1d(
                input_dim,
                2 * num_channels,
                1,
                stride=1,
                padding=0,
                bias=bias,
            ),
            torch.nn.GLU(dim=1),
            torch.nn.Conv1d(
                num_channels,
                num_channels,
                depthwise_kernel_size,
                stride=1,
                padding=(depthwise_kernel_size - 1) // 2,
                groups=num_channels,
                bias=bias,
            ),
            torch.nn.GroupNorm(num_groups=1, num_channels=num_channels)
            if use_group_norm
            else torch.nn.BatchNorm1d(num_channels),
            torch.nn.SiLU(),
            torch.nn.Conv1d(
                num_channels,
                input_dim,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=bias,
            ),
            torch.nn.Dropout(dropout),
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        r"""

        Args:

            input (torch.Tensor): with shape `(B, T, D)`.



        Returns:

            torch.Tensor: output, with shape `(B, T, D)`.

        """
        x = self.layer_norm(input)
        x = x.transpose(1, 2)
        x = self.sequential(x)
        return x.transpose(1, 2)


class _FeedForwardModule(torch.nn.Module):
    r"""Positionwise feed forward layer.



    Args:

        input_dim (int): input dimension.

        hidden_dim (int): hidden dimension.

        dropout (float, optional): dropout probability. (Default: 0.0)

    """

    def __init__(self, input_dim: int, hidden_dim: int, dropout: float = 0.0) -> None:
        super().__init__()
        self.sequential = torch.nn.Sequential(
            torch.nn.LayerNorm(input_dim),
            torch.nn.Linear(input_dim, hidden_dim, bias=True),
            torch.nn.SiLU(),
            torch.nn.Dropout(dropout),
            torch.nn.Linear(hidden_dim, input_dim, bias=True),
            torch.nn.Dropout(dropout),
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        r"""

        Args:

            input (torch.Tensor): with shape `(*, D)`.



        Returns:

            torch.Tensor: output, with shape `(*, D)`.

        """
        return self.sequential(input)


class ConformerLayer(torch.nn.Module):
    r"""Conformer layer that constitutes Conformer.



    Args:

        input_dim (int): input dimension.

        ffn_dim (int): hidden layer dimension of feedforward network.

        num_attention_heads (int): number of attention heads.

        depthwise_conv_kernel_size (int): kernel size of depthwise convolution layer.

        dropout (float, optional): dropout probability. (Default: 0.0)

        use_group_norm (bool, optional): use ``GroupNorm`` rather than ``BatchNorm1d``

            in the convolution module. (Default: ``False``)

        convolution_first (bool, optional): apply the convolution module ahead of

            the attention module. (Default: ``False``)

    """

    def __init__(

        self,

        input_dim: int,

        ffn_dim: int,

        num_attention_heads: int,

        depthwise_conv_kernel_size: int,

        dropout: float = 0.0,

        use_group_norm: bool = False,

        convolution_first: bool = False,

    ) -> None:
        super().__init__()

        self.ffn1 = _FeedForwardModule(input_dim, ffn_dim, dropout=dropout)

        self.self_attn_layer_norm = torch.nn.LayerNorm(input_dim)
        self.self_attn = torch.nn.MultiheadAttention(input_dim, num_attention_heads, dropout=dropout)
        self.self_attn_dropout = torch.nn.Dropout(dropout)

        self.conv_module = _ConvolutionModule(
            input_dim=input_dim,
            num_channels=input_dim,
            depthwise_kernel_size=depthwise_conv_kernel_size,
            dropout=dropout,
            bias=True,
            use_group_norm=use_group_norm,
        )

        self.ffn2 = _FeedForwardModule(input_dim, ffn_dim, dropout=dropout)
        self.final_layer_norm = torch.nn.LayerNorm(input_dim)
        self.convolution_first = convolution_first

    def _apply_convolution(self, input: torch.Tensor) -> torch.Tensor:
        residual = input
        input = input.transpose(0, 1)
        input = self.conv_module(input)
        input = input.transpose(0, 1)
        input = residual + input
        return input

    def forward(self, input: torch.Tensor, key_padding_mask: Optional[torch.Tensor]) -> torch.Tensor:
        r"""

        Args:

            input (torch.Tensor): input, with shape `(T, B, D)`.

            key_padding_mask (torch.Tensor or None): key padding mask to use in self attention layer.



        Returns:

            torch.Tensor: output, with shape `(T, B, D)`.

        """
        residual = input
        x = self.ffn1(input)
        x = x * 0.5 + residual

        if self.convolution_first:
            x = self._apply_convolution(x)

        residual = x
        x = self.self_attn_layer_norm(x)
        x, _ = self.self_attn(
            query=x,
            key=x,
            value=x,
            key_padding_mask=key_padding_mask,
            need_weights=False,
        )
        x = self.self_attn_dropout(x)
        x = x + residual

        if not self.convolution_first:
            x = self._apply_convolution(x)

        residual = x
        x = self.ffn2(x)
        x = x * 0.5 + residual

        x = self.final_layer_norm(x)
        return x


class Conformer(torch.nn.Module):
    r"""Conformer architecture introduced in

    *Conformer: Convolution-augmented Transformer for Speech Recognition*

    :cite:`gulati2020conformer`.



    Args:

        input_dim (int): input dimension.

        num_heads (int): number of attention heads in each Conformer layer.

        ffn_dim (int): hidden layer dimension of feedforward networks.

        num_layers (int): number of Conformer layers to instantiate.

        depthwise_conv_kernel_size (int): kernel size of each Conformer layer's depthwise convolution layer.

        dropout (float, optional): dropout probability. (Default: 0.0)

        use_group_norm (bool, optional): use ``GroupNorm`` rather than ``BatchNorm1d``

            in the convolution module. (Default: ``False``)

        convolution_first (bool, optional): apply the convolution module ahead of

            the attention module. (Default: ``False``)



    Examples:

        >>> conformer = Conformer(

        >>>     input_dim=80,

        >>>     num_heads=4,

        >>>     ffn_dim=128,

        >>>     num_layers=4,

        >>>     depthwise_conv_kernel_size=31,

        >>> )

        >>> lengths = torch.randint(1, 400, (10,))  # (batch,)

        >>> input = torch.rand(10, int(lengths.max()), input_dim)  # (batch, num_frames, input_dim)

        >>> output = conformer(input, lengths)

    """

    def __init__(

        self,

        input_dim: int,

        num_heads: int,

        ffn_dim: int,

        num_layers: int,

        depthwise_conv_kernel_size: int,

        dropout: float = 0.0,

        use_group_norm: bool = False,

        convolution_first: bool = False,

    ):
        super().__init__()

        self.conformer_layers = torch.nn.ModuleList(
            [
                ConformerLayer(
                    input_dim,
                    ffn_dim,
                    num_heads,
                    depthwise_conv_kernel_size,
                    dropout=dropout,
                    use_group_norm=use_group_norm,
                    convolution_first=convolution_first,
                )
                for _ in range(num_layers)
            ]
        )

    def forward(self, input: torch.Tensor, lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        r"""

        Args:

            input (torch.Tensor): with shape `(B, T, input_dim)`.

            lengths (torch.Tensor): with shape `(B,)` and i-th element representing

                number of valid frames for i-th batch element in ``input``.



        Returns:

            (torch.Tensor, torch.Tensor)

                torch.Tensor

                    output frames, with shape `(B, T, input_dim)`

                torch.Tensor

                    output lengths, with shape `(B,)` and i-th element representing

                    number of valid frames for i-th batch element in output frames.

        """
        encoder_padding_mask = _lengths_to_padding_mask(lengths)

        x = input.transpose(0, 1)
        for layer in self.conformer_layers:
            x = layer(x, encoder_padding_mask)
        return x.transpose(0, 1), lengths