Spaces:
Paused
Paused
File size: 12,034 Bytes
864affd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
from pathlib import Path
from typing import List, Tuple, Union
from torch import Tensor
from torch.utils.data import Dataset
from torchaudio._internal import download_url_to_file
from torchaudio.datasets.utils import _extract_zip, _load_waveform
SAMPLE_RATE = 16000
_ARCHIVE_CONFIGS = {
"dev": {
"archive_name": "vox1_dev_wav.zip",
"urls": [
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa",
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab",
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac",
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad",
],
"checksums": [
"21ec6ca843659ebc2fdbe04b530baa4f191ad4b0971912672d92c158f32226a0",
"311d21e0c8cbf33573a4fce6c80e5a279d80736274b381c394319fc557159a04",
"92b64465f2b2a3dc0e4196ae8dd6828cbe9ddd1f089419a11e4cbfe2e1750df0",
"00e6190c770b27f27d2a3dd26ee15596b17066b715ac111906861a7d09a211a5",
],
},
"test": {
"archive_name": "vox1_test_wav.zip",
"url": "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip",
"checksum": "8de57f347fe22b2c24526e9f444f689ecf5096fc2a92018cf420ff6b5b15eaea",
},
}
_IDEN_SPLIT_URL = "https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/iden_split.txt"
_VERI_TEST_URL = "https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test.txt"
def _download_extract_wavs(root: str):
for archive in ["dev", "test"]:
archive_name = _ARCHIVE_CONFIGS[archive]["archive_name"]
archive_path = os.path.join(root, archive_name)
# The zip file of dev data is splited to 4 chunks.
# Download and combine them into one file before extraction.
if archive == "dev":
urls = _ARCHIVE_CONFIGS[archive]["urls"]
checksums = _ARCHIVE_CONFIGS[archive]["checksums"]
with open(archive_path, "wb") as f:
for url, checksum in zip(urls, checksums):
file_path = os.path.join(root, os.path.basename(url))
download_url_to_file(url, file_path, hash_prefix=checksum)
with open(file_path, "rb") as f_split:
f.write(f_split.read())
else:
url = _ARCHIVE_CONFIGS[archive]["url"]
checksum = _ARCHIVE_CONFIGS[archive]["checksum"]
download_url_to_file(url, archive_path, hash_prefix=checksum)
_extract_zip(archive_path)
def _get_flist(root: str, file_path: str, subset: str) -> List[str]:
f_list = []
if subset == "train":
index = 1
elif subset == "dev":
index = 2
else:
index = 3
with open(file_path, "r") as f:
for line in f:
id, path = line.split()
if int(id) == index:
f_list.append(path)
return sorted(f_list)
def _get_paired_flist(root: str, veri_test_path: str):
f_list = []
with open(veri_test_path, "r") as f:
for line in f:
label, path1, path2 = line.split()
f_list.append((label, path1, path2))
return f_list
def _get_file_id(file_path: str, _ext_audio: str):
speaker_id, youtube_id, utterance_id = file_path.split("/")[-3:]
utterance_id = utterance_id.replace(_ext_audio, "")
file_id = "-".join([speaker_id, youtube_id, utterance_id])
return file_id
class VoxCeleb1(Dataset):
"""*VoxCeleb1* :cite:`nagrani2017voxceleb` dataset.
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
download (bool, optional):
Whether to download the dataset if it is not found at root path. (Default: ``False``).
"""
_ext_audio = ".wav"
def __init__(self, root: Union[str, Path], download: bool = False) -> None:
# Get string representation of 'root' in case Path object is passed
root = os.fspath(root)
self._path = os.path.join(root, "wav")
if not os.path.isdir(self._path):
if not download:
raise RuntimeError(
f"Dataset not found at {self._path}. Please set `download=True` to download the dataset."
)
_download_extract_wavs(root)
def get_metadata(self, n: int):
raise NotImplementedError
def __getitem__(self, n: int):
raise NotImplementedError
def __len__(self) -> int:
raise NotImplementedError
class VoxCeleb1Identification(VoxCeleb1):
"""*VoxCeleb1* :cite:`nagrani2017voxceleb` dataset for speaker identification task.
Each data sample contains the waveform, sample rate, speaker id, and the file id.
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
subset (str, optional): Subset of the dataset to use. Options: ["train", "dev", "test"]. (Default: ``"train"``)
meta_url (str, optional): The url of meta file that contains the list of subset labels and file paths.
The format of each row is ``subset file_path". For example: ``1 id10006/nLEBBc9oIFs/00003.wav``.
``1``, ``2``, ``3`` mean ``train``, ``dev``, and ``test`` subest, respectively.
(Default: ``"https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/iden_split.txt"``)
download (bool, optional):
Whether to download the dataset if it is not found at root path. (Default: ``False``).
Note:
The file structure of `VoxCeleb1Identification` dataset is as follows:
ββ root/
ββ wav/
ββ speaker_id folders
Users who pre-downloaded the ``"vox1_dev_wav.zip"`` and ``"vox1_test_wav.zip"`` files need to move
the extracted files into the same ``root`` directory.
"""
def __init__(
self, root: Union[str, Path], subset: str = "train", meta_url: str = _IDEN_SPLIT_URL, download: bool = False
) -> None:
super().__init__(root, download)
if subset not in ["train", "dev", "test"]:
raise ValueError("`subset` must be one of ['train', 'dev', 'test']")
# download the iden_split.txt to get the train, dev, test lists.
meta_list_path = os.path.join(root, os.path.basename(meta_url))
if not os.path.exists(meta_list_path):
download_url_to_file(meta_url, meta_list_path)
self._flist = _get_flist(self._path, meta_list_path, subset)
def get_metadata(self, n: int) -> Tuple[str, int, int, str]:
"""Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform,
but otherwise returns the same fields as :py:func:`__getitem__`.
Args:
n (int): The index of the sample
Returns:
Tuple of the following items;
str:
Path to audio
int:
Sample rate
int:
Speaker ID
str:
File ID
"""
file_path = self._flist[n]
file_id = _get_file_id(file_path, self._ext_audio)
speaker_id = file_id.split("-")[0]
speaker_id = int(speaker_id[3:])
return file_path, SAMPLE_RATE, speaker_id, file_id
def __getitem__(self, n: int) -> Tuple[Tensor, int, int, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
Tensor:
Waveform
int:
Sample rate
int:
Speaker ID
str:
File ID
"""
metadata = self.get_metadata(n)
waveform = _load_waveform(self._path, metadata[0], metadata[1])
return (waveform,) + metadata[1:]
def __len__(self) -> int:
return len(self._flist)
class VoxCeleb1Verification(VoxCeleb1):
"""*VoxCeleb1* :cite:`nagrani2017voxceleb` dataset for speaker verification task.
Each data sample contains a pair of waveforms, sample rate, the label indicating if they are
from the same speaker, and the file ids.
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
meta_url (str, optional): The url of meta file that contains a list of utterance pairs
and the corresponding labels. The format of each row is ``label file_path1 file_path2".
For example: ``1 id10270/x6uYqmx31kE/00001.wav id10270/8jEAjG6SegY/00008.wav``.
``1`` means the two utterances are from the same speaker, ``0`` means not.
(Default: ``"https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test.txt"``)
download (bool, optional):
Whether to download the dataset if it is not found at root path. (Default: ``False``).
Note:
The file structure of `VoxCeleb1Verification` dataset is as follows:
ββ root/
ββ wav/
ββ speaker_id folders
Users who pre-downloaded the ``"vox1_dev_wav.zip"`` and ``"vox1_test_wav.zip"`` files need to move
the extracted files into the same ``root`` directory.
"""
def __init__(self, root: Union[str, Path], meta_url: str = _VERI_TEST_URL, download: bool = False) -> None:
super().__init__(root, download)
# download the veri_test.txt to get the list of training pairs and labels.
meta_list_path = os.path.join(root, os.path.basename(meta_url))
if not os.path.exists(meta_list_path):
download_url_to_file(meta_url, meta_list_path)
self._flist = _get_paired_flist(self._path, meta_list_path)
def get_metadata(self, n: int) -> Tuple[str, str, int, int, str, str]:
"""Get metadata for the n-th sample from the dataset. Returns filepaths instead of waveforms,
but otherwise returns the same fields as :py:func:`__getitem__`.
Args:
n (int): The index of the sample
Returns:
Tuple of the following items;
str:
Path to audio file of speaker 1
str:
Path to audio file of speaker 2
int:
Sample rate
int:
Label
str:
File ID of speaker 1
str:
File ID of speaker 2
"""
label, file_path_spk1, file_path_spk2 = self._flist[n]
label = int(label)
file_id_spk1 = _get_file_id(file_path_spk1, self._ext_audio)
file_id_spk2 = _get_file_id(file_path_spk2, self._ext_audio)
return file_path_spk1, file_path_spk2, SAMPLE_RATE, label, file_id_spk1, file_id_spk2
def __getitem__(self, n: int) -> Tuple[Tensor, Tensor, int, int, str, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded.
Returns:
Tuple of the following items;
Tensor:
Waveform of speaker 1
Tensor:
Waveform of speaker 2
int:
Sample rate
int:
Label
str:
File ID of speaker 1
str:
File ID of speaker 2
"""
metadata = self.get_metadata(n)
waveform_spk1 = _load_waveform(self._path, metadata[0], metadata[2])
waveform_spk2 = _load_waveform(self._path, metadata[1], metadata[2])
return (waveform_spk1, waveform_spk2) + metadata[2:]
def __len__(self) -> int:
return len(self._flist)
|