from sympy.ntheory import count_digits, digits, is_palindromic from sympy.core.intfunc import num_digits from sympy.testing.pytest import raises def test_num_digits(): # depending on whether one rounds up or down or uses log or log10, # one or more of these will fail if you don't check for the off-by # one condition assert num_digits(2, 2) == 2 assert num_digits(2**48 - 1, 2) == 48 assert num_digits(1000, 10) == 4 assert num_digits(125, 5) == 4 assert num_digits(100, 16) == 2 assert num_digits(-1000, 10) == 4 # if changes are made to the function, this structured test over # this range will expose problems for base in range(2, 100): for e in range(1, 100): n = base**e assert num_digits(n, base) == e + 1 assert num_digits(n + 1, base) == e + 1 assert num_digits(n - 1, base) == e def test_digits(): assert all(digits(n, 2)[1:] == [int(d) for d in format(n, 'b')] for n in range(20)) assert all(digits(n, 8)[1:] == [int(d) for d in format(n, 'o')] for n in range(20)) assert all(digits(n, 16)[1:] == [int(d, 16) for d in format(n, 'x')] for n in range(20)) assert digits(2345, 34) == [34, 2, 0, 33] assert digits(384753, 71) == [71, 1, 5, 23, 4] assert digits(93409, 10) == [10, 9, 3, 4, 0, 9] assert digits(-92838, 11) == [-11, 6, 3, 8, 2, 9] assert digits(35, 10) == [10, 3, 5] assert digits(35, 10, 3) == [10, 0, 3, 5] assert digits(-35, 10, 4) == [-10, 0, 0, 3, 5] raises(ValueError, lambda: digits(2, 2, 1)) def test_count_digits(): assert count_digits(55, 2) == {1: 5, 0: 1} assert count_digits(55, 10) == {5: 2} n = count_digits(123) assert n[4] == 0 and type(n[4]) is int def test_is_palindromic(): assert is_palindromic(-11) assert is_palindromic(11) assert is_palindromic(0o121, 8) assert not is_palindromic(123)