Spaces:
Sleeping
Sleeping
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Histogram summaries and TensorFlow operations to create them. | |
A histogram summary stores a list of buckets. Each bucket is encoded as | |
a triple `[left_edge, right_edge, count]`. Thus, a full histogram is | |
encoded as a tensor of dimension `[k, 3]`. | |
In general, the value of `k` (the number of buckets) will be a constant, | |
like 30. There are two edge cases: if there is no data, then there are | |
no buckets (the shape is `[0, 3]`); and if there is data but all points | |
have the same value, then there is one bucket whose left and right | |
endpoints are the same (the shape is `[1, 3]`). | |
NOTE: This module is in beta, and its API is subject to change, but the | |
data that it stores to disk will be supported forever. | |
""" | |
import numpy as np | |
from tensorboard.plugins.histogram import metadata | |
from tensorboard.plugins.histogram import summary_v2 | |
# Export V3 versions. | |
histogram = summary_v2.histogram | |
histogram_pb = summary_v2.histogram_pb | |
def _buckets(data, bucket_count=None): | |
"""Create a TensorFlow op to group data into histogram buckets. | |
Arguments: | |
data: A `Tensor` of any shape. Must be castable to `float64`. | |
bucket_count: Optional positive `int` or scalar `int32` `Tensor`. | |
Returns: | |
A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is | |
a triple `[left_edge, right_edge, count]` for a single bucket. | |
The value of `k` is either `bucket_count` or `1` or `0`. | |
""" | |
# TODO(nickfelt): remove on-demand imports once dep situation is fixed. | |
import tensorflow.compat.v1 as tf | |
if bucket_count is None: | |
bucket_count = summary_v2.DEFAULT_BUCKET_COUNT | |
with tf.name_scope( | |
"buckets", values=[data, bucket_count] | |
), tf.control_dependencies( | |
[tf.assert_scalar(bucket_count), tf.assert_type(bucket_count, tf.int32)] | |
): | |
data = tf.reshape(data, shape=[-1]) # flatten | |
data = tf.cast(data, tf.float64) | |
is_empty = tf.equal(tf.size(input=data), 0) | |
def when_empty(): | |
return tf.constant([], shape=(0, 3), dtype=tf.float64) | |
def when_nonempty(): | |
min_ = tf.reduce_min(input_tensor=data) | |
max_ = tf.reduce_max(input_tensor=data) | |
range_ = max_ - min_ | |
is_singular = tf.equal(range_, 0) | |
def when_nonsingular(): | |
bucket_width = range_ / tf.cast(bucket_count, tf.float64) | |
offsets = data - min_ | |
bucket_indices = tf.cast( | |
tf.floor(offsets / bucket_width), dtype=tf.int32 | |
) | |
clamped_indices = tf.minimum(bucket_indices, bucket_count - 1) | |
# Use float64 instead of float32 to avoid accumulating floating point error | |
# later in tf.reduce_sum when summing more than 2^24 individual `1.0` values. | |
# See https://github.com/tensorflow/tensorflow/issues/51419 for details. | |
one_hots = tf.one_hot( | |
clamped_indices, depth=bucket_count, dtype=tf.float64 | |
) | |
bucket_counts = tf.cast( | |
tf.reduce_sum(input_tensor=one_hots, axis=0), | |
dtype=tf.float64, | |
) | |
edges = tf.linspace(min_, max_, bucket_count + 1) | |
left_edges = edges[:-1] | |
right_edges = edges[1:] | |
return tf.transpose( | |
a=tf.stack([left_edges, right_edges, bucket_counts]) | |
) | |
def when_singular(): | |
center = min_ | |
bucket_starts = tf.stack([center - 0.5]) | |
bucket_ends = tf.stack([center + 0.5]) | |
bucket_counts = tf.stack( | |
[tf.cast(tf.size(input=data), tf.float64)] | |
) | |
return tf.transpose( | |
a=tf.stack([bucket_starts, bucket_ends, bucket_counts]) | |
) | |
return tf.cond(is_singular, when_singular, when_nonsingular) | |
return tf.cond(is_empty, when_empty, when_nonempty) | |
def op( | |
name, | |
data, | |
bucket_count=None, | |
display_name=None, | |
description=None, | |
collections=None, | |
): | |
"""Create a legacy histogram summary op. | |
Arguments: | |
name: A unique name for the generated summary node. | |
data: A `Tensor` of any shape. Must be castable to `float64`. | |
bucket_count: Optional positive `int`. The output will have this | |
many buckets, except in two edge cases. If there is no data, then | |
there are no buckets. If there is data but all points have the | |
same value, then there is one bucket whose left and right | |
endpoints are the same. | |
display_name: Optional name for this summary in TensorBoard, as a | |
constant `str`. Defaults to `name`. | |
description: Optional long-form description for this summary, as a | |
constant `str`. Markdown is supported. Defaults to empty. | |
collections: Optional list of graph collections keys. The new | |
summary op is added to these collections. Defaults to | |
`[Graph Keys.SUMMARIES]`. | |
Returns: | |
A TensorFlow summary op. | |
""" | |
# TODO(nickfelt): remove on-demand imports once dep situation is fixed. | |
import tensorflow.compat.v1 as tf | |
if display_name is None: | |
display_name = name | |
summary_metadata = metadata.create_summary_metadata( | |
display_name=display_name, description=description | |
) | |
with tf.name_scope(name): | |
tensor = _buckets(data, bucket_count=bucket_count) | |
return tf.summary.tensor_summary( | |
name="histogram_summary", | |
tensor=tensor, | |
collections=collections, | |
summary_metadata=summary_metadata, | |
) | |
def pb(name, data, bucket_count=None, display_name=None, description=None): | |
"""Create a legacy histogram summary protobuf. | |
Arguments: | |
name: A unique name for the generated summary, including any desired | |
name scopes. | |
data: A `np.array` or array-like form of any shape. Must have type | |
castable to `float`. | |
bucket_count: Optional positive `int`. The output will have this | |
many buckets, except in two edge cases. If there is no data, then | |
there are no buckets. If there is data but all points have the | |
same value, then there is one bucket whose left and right | |
endpoints are the same. | |
display_name: Optional name for this summary in TensorBoard, as a | |
`str`. Defaults to `name`. | |
description: Optional long-form description for this summary, as a | |
`str`. Markdown is supported. Defaults to empty. | |
Returns: | |
A `tf.Summary` protobuf object. | |
""" | |
# TODO(nickfelt): remove on-demand imports once dep situation is fixed. | |
import tensorflow.compat.v1 as tf | |
if bucket_count is None: | |
bucket_count = summary_v2.DEFAULT_BUCKET_COUNT | |
data = np.array(data).flatten().astype(float) | |
if data.size == 0: | |
buckets = np.array([]).reshape((0, 3)) | |
else: | |
min_ = np.min(data) | |
max_ = np.max(data) | |
range_ = max_ - min_ | |
if range_ == 0: | |
center = min_ | |
buckets = np.array([[center - 0.5, center + 0.5, float(data.size)]]) | |
else: | |
bucket_width = range_ / bucket_count | |
offsets = data - min_ | |
bucket_indices = np.floor(offsets / bucket_width).astype(int) | |
clamped_indices = np.minimum(bucket_indices, bucket_count - 1) | |
one_hots = np.array([clamped_indices]).transpose() == np.arange( | |
0, bucket_count | |
) # broadcast | |
assert one_hots.shape == (data.size, bucket_count), ( | |
one_hots.shape, | |
(data.size, bucket_count), | |
) | |
bucket_counts = np.sum(one_hots, axis=0) | |
edges = np.linspace(min_, max_, bucket_count + 1) | |
left_edges = edges[:-1] | |
right_edges = edges[1:] | |
buckets = np.array( | |
[left_edges, right_edges, bucket_counts] | |
).transpose() | |
tensor = tf.make_tensor_proto(buckets, dtype=tf.float64) | |
if display_name is None: | |
display_name = name | |
summary_metadata = metadata.create_summary_metadata( | |
display_name=display_name, description=description | |
) | |
tf_summary_metadata = tf.SummaryMetadata.FromString( | |
summary_metadata.SerializeToString() | |
) | |
summary = tf.Summary() | |
summary.value.add( | |
tag="%s/histogram_summary" % name, | |
metadata=tf_summary_metadata, | |
tensor=tensor, | |
) | |
return summary | |