Spaces:
Sleeping
Sleeping
"""Square-free decomposition algorithms and related tools. """ | |
from sympy.polys.densearith import ( | |
dup_neg, dmp_neg, | |
dup_sub, dmp_sub, | |
dup_mul, dmp_mul, | |
dup_quo, dmp_quo, | |
dup_mul_ground, dmp_mul_ground) | |
from sympy.polys.densebasic import ( | |
dup_strip, | |
dup_LC, dmp_ground_LC, | |
dmp_zero_p, | |
dmp_ground, | |
dup_degree, dmp_degree, dmp_degree_in, dmp_degree_list, | |
dmp_raise, dmp_inject, | |
dup_convert) | |
from sympy.polys.densetools import ( | |
dup_diff, dmp_diff, dmp_diff_in, | |
dup_shift, dmp_shift, | |
dup_monic, dmp_ground_monic, | |
dup_primitive, dmp_ground_primitive) | |
from sympy.polys.euclidtools import ( | |
dup_inner_gcd, dmp_inner_gcd, | |
dup_gcd, dmp_gcd, | |
dmp_resultant, dmp_primitive) | |
from sympy.polys.galoistools import ( | |
gf_sqf_list, gf_sqf_part) | |
from sympy.polys.polyerrors import ( | |
MultivariatePolynomialError, | |
DomainError) | |
def _dup_check_degrees(f, result): | |
"""Sanity check the degrees of a computed factorization in K[x].""" | |
deg = sum(k * dup_degree(fac) for (fac, k) in result) | |
assert deg == dup_degree(f) | |
def _dmp_check_degrees(f, u, result): | |
"""Sanity check the degrees of a computed factorization in K[X].""" | |
degs = [0] * (u + 1) | |
for fac, k in result: | |
degs_fac = dmp_degree_list(fac, u) | |
degs = [d1 + k * d2 for d1, d2 in zip(degs, degs_fac)] | |
assert tuple(degs) == dmp_degree_list(f, u) | |
def dup_sqf_p(f, K): | |
""" | |
Return ``True`` if ``f`` is a square-free polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sqf_p(x**2 - 2*x + 1) | |
False | |
>>> R.dup_sqf_p(x**2 - 1) | |
True | |
""" | |
if not f: | |
return True | |
else: | |
return not dup_degree(dup_gcd(f, dup_diff(f, 1, K), K)) | |
def dmp_sqf_p(f, u, K): | |
""" | |
Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sqf_p(x**2 + 2*x*y + y**2) | |
False | |
>>> R.dmp_sqf_p(x**2 + y**2) | |
True | |
""" | |
if dmp_zero_p(f, u): | |
return True | |
for i in range(u+1): | |
fp = dmp_diff_in(f, 1, i, u, K) | |
if dmp_zero_p(fp, u): | |
continue | |
gcd = dmp_gcd(f, fp, u, K) | |
if dmp_degree_in(gcd, i, u) != 0: | |
return False | |
return True | |
def dup_sqf_norm(f, K): | |
r""" | |
Find a shift of `f` in `K[x]` that has square-free norm. | |
The domain `K` must be an algebraic number field `k(a)` (see :ref:`QQ(a)`). | |
Returns `(s,g,r)`, such that `g(x)=f(x-sa)`, `r(x)=\text{Norm}(g(x))` and | |
`r` is a square-free polynomial over `k`. | |
Examples | |
======== | |
We first create the algebraic number field `K=k(a)=\mathbb{Q}(\sqrt{3})` | |
and rings `K[x]` and `k[x]`: | |
>>> from sympy.polys import ring, QQ | |
>>> from sympy import sqrt | |
>>> K = QQ.algebraic_field(sqrt(3)) | |
>>> R, x = ring("x", K) | |
>>> _, X = ring("x", QQ) | |
We can now find a square free norm for a shift of `f`: | |
>>> f = x**2 - 1 | |
>>> s, g, r = R.dup_sqf_norm(f) | |
The choice of shift `s` is arbitrary and the particular values returned for | |
`g` and `r` are determined by `s`. | |
>>> s == 1 | |
True | |
>>> g == x**2 - 2*sqrt(3)*x + 2 | |
True | |
>>> r == X**4 - 8*X**2 + 4 | |
True | |
The invariants are: | |
>>> g == f.shift(-s*K.unit) | |
True | |
>>> g.norm() == r | |
True | |
>>> r.is_squarefree | |
True | |
Explanation | |
=========== | |
This is part of Trager's algorithm for factorizing polynomials over | |
algebraic number fields. In particular this function is algorithm | |
``sqfr_norm`` from [Trager76]_. | |
See Also | |
======== | |
dmp_sqf_norm: | |
Analogous function for multivariate polynomials over ``k(a)``. | |
dmp_norm: | |
Computes the norm of `f` directly without any shift. | |
dup_ext_factor: | |
Function implementing Trager's algorithm that uses this. | |
sympy.polys.polytools.sqf_norm: | |
High-level interface for using this function. | |
""" | |
if not K.is_Algebraic: | |
raise DomainError("ground domain must be algebraic") | |
s, g = 0, dmp_raise(K.mod.to_list(), 1, 0, K.dom) | |
while True: | |
h, _ = dmp_inject(f, 0, K, front=True) | |
r = dmp_resultant(g, h, 1, K.dom) | |
if dup_sqf_p(r, K.dom): | |
break | |
else: | |
f, s = dup_shift(f, -K.unit, K), s + 1 | |
return s, f, r | |
def _dmp_sqf_norm_shifts(f, u, K): | |
"""Generate a sequence of candidate shifts for dmp_sqf_norm.""" | |
# | |
# We want to find a minimal shift if possible because shifting high degree | |
# variables can be expensive e.g. x**10 -> (x + 1)**10. We try a few easy | |
# cases first before the final infinite loop that is guaranteed to give | |
# only finitely many bad shifts (see Trager76 for proof of this in the | |
# univariate case). | |
# | |
# First the trivial shift [0, 0, ...] | |
n = u + 1 | |
s0 = [0] * n | |
yield s0, f | |
# Shift in multiples of the generator of the extension field K | |
a = K.unit | |
# Variables of degree > 0 ordered by increasing degree | |
d = dmp_degree_list(f, u) | |
var_indices = [i for di, i in sorted(zip(d, range(u+1))) if di > 0] | |
# Now try [1, 0, 0, ...], [0, 1, 0, ...] | |
for i in var_indices: | |
s1 = s0.copy() | |
s1[i] = 1 | |
a1 = [-a*s1i for s1i in s1] | |
f1 = dmp_shift(f, a1, u, K) | |
yield s1, f1 | |
# Now try [1, 1, 1, ...], [2, 2, 2, ...] | |
j = 0 | |
while True: | |
j += 1 | |
sj = [j] * n | |
aj = [-a*j] * n | |
fj = dmp_shift(f, aj, u, K) | |
yield sj, fj | |
def dmp_sqf_norm(f, u, K): | |
r""" | |
Find a shift of ``f`` in ``K[X]`` that has square-free norm. | |
The domain `K` must be an algebraic number field `k(a)` (see :ref:`QQ(a)`). | |
Returns `(s,g,r)`, such that `g(x_1,x_2,\cdots)=f(x_1-s_1 a, x_2 - s_2 a, | |
\cdots)`, `r(x)=\text{Norm}(g(x))` and `r` is a square-free polynomial over | |
`k`. | |
Examples | |
======== | |
We first create the algebraic number field `K=k(a)=\mathbb{Q}(i)` and rings | |
`K[x,y]` and `k[x,y]`: | |
>>> from sympy.polys import ring, QQ | |
>>> from sympy import I | |
>>> K = QQ.algebraic_field(I) | |
>>> R, x, y = ring("x,y", K) | |
>>> _, X, Y = ring("x,y", QQ) | |
We can now find a square free norm for a shift of `f`: | |
>>> f = x*y + y**2 | |
>>> s, g, r = R.dmp_sqf_norm(f) | |
The choice of shifts ``s`` is arbitrary and the particular values returned | |
for ``g`` and ``r`` are determined by ``s``. | |
>>> s | |
[0, 1] | |
>>> g == x*y - I*x + y**2 - 2*I*y - 1 | |
True | |
>>> r == X**2*Y**2 + X**2 + 2*X*Y**3 + 2*X*Y + Y**4 + 2*Y**2 + 1 | |
True | |
The required invariants are: | |
>>> g == f.shift_list([-si*K.unit for si in s]) | |
True | |
>>> g.norm() == r | |
True | |
>>> r.is_squarefree | |
True | |
Explanation | |
=========== | |
This is part of Trager's algorithm for factorizing polynomials over | |
algebraic number fields. In particular this function is a multivariate | |
generalization of algorithm ``sqfr_norm`` from [Trager76]_. | |
See Also | |
======== | |
dup_sqf_norm: | |
Analogous function for univariate polynomials over ``k(a)``. | |
dmp_norm: | |
Computes the norm of `f` directly without any shift. | |
dmp_ext_factor: | |
Function implementing Trager's algorithm that uses this. | |
sympy.polys.polytools.sqf_norm: | |
High-level interface for using this function. | |
""" | |
if not u: | |
s, g, r = dup_sqf_norm(f, K) | |
return [s], g, r | |
if not K.is_Algebraic: | |
raise DomainError("ground domain must be algebraic") | |
g = dmp_raise(K.mod.to_list(), u + 1, 0, K.dom) | |
for s, f in _dmp_sqf_norm_shifts(f, u, K): | |
h, _ = dmp_inject(f, u, K, front=True) | |
r = dmp_resultant(g, h, u + 1, K.dom) | |
if dmp_sqf_p(r, u, K.dom): | |
break | |
return s, f, r | |
def dmp_norm(f, u, K): | |
r""" | |
Norm of ``f`` in ``K[X]``, often not square-free. | |
The domain `K` must be an algebraic number field `k(a)` (see :ref:`QQ(a)`). | |
Examples | |
======== | |
We first define the algebraic number field `K = k(a) = \mathbb{Q}(\sqrt{2})`: | |
>>> from sympy import QQ, sqrt | |
>>> from sympy.polys.sqfreetools import dmp_norm | |
>>> k = QQ | |
>>> K = k.algebraic_field(sqrt(2)) | |
We can now compute the norm of a polynomial `p` in `K[x,y]`: | |
>>> p = [[K(1)], [K(1),K.unit]] # x + y + sqrt(2) | |
>>> N = [[k(1)], [k(2),k(0)], [k(1),k(0),k(-2)]] # x**2 + 2*x*y + y**2 - 2 | |
>>> dmp_norm(p, 1, K) == N | |
True | |
In higher level functions that is: | |
>>> from sympy import expand, roots, minpoly | |
>>> from sympy.abc import x, y | |
>>> from math import prod | |
>>> a = sqrt(2) | |
>>> e = (x + y + a) | |
>>> e.as_poly([x, y], extension=a).norm() | |
Poly(x**2 + 2*x*y + y**2 - 2, x, y, domain='QQ') | |
This is equal to the product of the expressions `x + y + a_i` where the | |
`a_i` are the conjugates of `a`: | |
>>> pa = minpoly(a) | |
>>> pa | |
_x**2 - 2 | |
>>> rs = roots(pa, multiple=True) | |
>>> rs | |
[sqrt(2), -sqrt(2)] | |
>>> n = prod(e.subs(a, r) for r in rs) | |
>>> n | |
(x + y - sqrt(2))*(x + y + sqrt(2)) | |
>>> expand(n) | |
x**2 + 2*x*y + y**2 - 2 | |
Explanation | |
=========== | |
Given an algebraic number field `K = k(a)` any element `b` of `K` can be | |
represented as polynomial function `b=g(a)` where `g` is in `k[x]`. If the | |
minimal polynomial of `a` over `k` is `p_a` then the roots `a_1`, `a_2`, | |
`\cdots` of `p_a(x)` are the conjugates of `a`. The norm of `b` is the | |
product `g(a1) \times g(a2) \times \cdots` and is an element of `k`. | |
As in [Trager76]_ we extend this norm to multivariate polynomials over `K`. | |
If `b(x)` is a polynomial in `k(a)[X]` then we can think of `b` as being | |
alternately a function `g_X(a)` where `g_X` is an element of `k[X][y]` i.e. | |
a polynomial function with coefficients that are elements of `k[X]`. Then | |
the norm of `b` is the product `g_X(a1) \times g_X(a2) \times \cdots` and | |
will be an element of `k[X]`. | |
See Also | |
======== | |
dmp_sqf_norm: | |
Compute a shift of `f` so that the `\text{Norm}(f)` is square-free. | |
sympy.polys.polytools.Poly.norm: | |
Higher-level function that calls this. | |
""" | |
if not K.is_Algebraic: | |
raise DomainError("ground domain must be algebraic") | |
g = dmp_raise(K.mod.to_list(), u + 1, 0, K.dom) | |
h, _ = dmp_inject(f, u, K, front=True) | |
return dmp_resultant(g, h, u + 1, K.dom) | |
def dup_gf_sqf_part(f, K): | |
"""Compute square-free part of ``f`` in ``GF(p)[x]``. """ | |
f = dup_convert(f, K, K.dom) | |
g = gf_sqf_part(f, K.mod, K.dom) | |
return dup_convert(g, K.dom, K) | |
def dmp_gf_sqf_part(f, u, K): | |
"""Compute square-free part of ``f`` in ``GF(p)[X]``. """ | |
raise NotImplementedError('multivariate polynomials over finite fields') | |
def dup_sqf_part(f, K): | |
""" | |
Returns square-free part of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sqf_part(x**3 - 3*x - 2) | |
x**2 - x - 2 | |
See Also | |
======== | |
sympy.polys.polytools.Poly.sqf_part | |
""" | |
if K.is_FiniteField: | |
return dup_gf_sqf_part(f, K) | |
if not f: | |
return f | |
if K.is_negative(dup_LC(f, K)): | |
f = dup_neg(f, K) | |
gcd = dup_gcd(f, dup_diff(f, 1, K), K) | |
sqf = dup_quo(f, gcd, K) | |
if K.is_Field: | |
return dup_monic(sqf, K) | |
else: | |
return dup_primitive(sqf, K)[1] | |
def dmp_sqf_part(f, u, K): | |
""" | |
Returns square-free part of a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2) | |
x**2 + x*y | |
""" | |
if not u: | |
return dup_sqf_part(f, K) | |
if K.is_FiniteField: | |
return dmp_gf_sqf_part(f, u, K) | |
if dmp_zero_p(f, u): | |
return f | |
if K.is_negative(dmp_ground_LC(f, u, K)): | |
f = dmp_neg(f, u, K) | |
gcd = f | |
for i in range(u+1): | |
gcd = dmp_gcd(gcd, dmp_diff_in(f, 1, i, u, K), u, K) | |
sqf = dmp_quo(f, gcd, u, K) | |
if K.is_Field: | |
return dmp_ground_monic(sqf, u, K) | |
else: | |
return dmp_ground_primitive(sqf, u, K)[1] | |
def dup_gf_sqf_list(f, K, all=False): | |
"""Compute square-free decomposition of ``f`` in ``GF(p)[x]``. """ | |
f_orig = f | |
f = dup_convert(f, K, K.dom) | |
coeff, factors = gf_sqf_list(f, K.mod, K.dom, all=all) | |
for i, (f, k) in enumerate(factors): | |
factors[i] = (dup_convert(f, K.dom, K), k) | |
_dup_check_degrees(f_orig, factors) | |
return K.convert(coeff, K.dom), factors | |
def dmp_gf_sqf_list(f, u, K, all=False): | |
"""Compute square-free decomposition of ``f`` in ``GF(p)[X]``. """ | |
raise NotImplementedError('multivariate polynomials over finite fields') | |
def dup_sqf_list(f, K, all=False): | |
""" | |
Return square-free decomposition of a polynomial in ``K[x]``. | |
Uses Yun's algorithm from [Yun76]_. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 | |
>>> R.dup_sqf_list(f) | |
(2, [(x + 1, 2), (x + 2, 3)]) | |
>>> R.dup_sqf_list(f, all=True) | |
(2, [(1, 1), (x + 1, 2), (x + 2, 3)]) | |
See Also | |
======== | |
dmp_sqf_list: | |
Corresponding function for multivariate polynomials. | |
sympy.polys.polytools.sqf_list: | |
High-level function for square-free factorization of expressions. | |
sympy.polys.polytools.Poly.sqf_list: | |
Analogous method on :class:`~.Poly`. | |
References | |
========== | |
[Yun76]_ | |
""" | |
if K.is_FiniteField: | |
return dup_gf_sqf_list(f, K, all=all) | |
f_orig = f | |
if K.is_Field: | |
coeff = dup_LC(f, K) | |
f = dup_monic(f, K) | |
else: | |
coeff, f = dup_primitive(f, K) | |
if K.is_negative(dup_LC(f, K)): | |
f = dup_neg(f, K) | |
coeff = -coeff | |
if dup_degree(f) <= 0: | |
return coeff, [] | |
result, i = [], 1 | |
h = dup_diff(f, 1, K) | |
g, p, q = dup_inner_gcd(f, h, K) | |
while True: | |
d = dup_diff(p, 1, K) | |
h = dup_sub(q, d, K) | |
if not h: | |
result.append((p, i)) | |
break | |
g, p, q = dup_inner_gcd(p, h, K) | |
if all or dup_degree(g) > 0: | |
result.append((g, i)) | |
i += 1 | |
_dup_check_degrees(f_orig, result) | |
return coeff, result | |
def dup_sqf_list_include(f, K, all=False): | |
""" | |
Return square-free decomposition of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 | |
>>> R.dup_sqf_list_include(f) | |
[(2, 1), (x + 1, 2), (x + 2, 3)] | |
>>> R.dup_sqf_list_include(f, all=True) | |
[(2, 1), (x + 1, 2), (x + 2, 3)] | |
""" | |
coeff, factors = dup_sqf_list(f, K, all=all) | |
if factors and factors[0][1] == 1: | |
g = dup_mul_ground(factors[0][0], coeff, K) | |
return [(g, 1)] + factors[1:] | |
else: | |
g = dup_strip([coeff]) | |
return [(g, 1)] + factors | |
def dmp_sqf_list(f, u, K, all=False): | |
""" | |
Return square-free decomposition of a polynomial in `K[X]`. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x**5 + 2*x**4*y + x**3*y**2 | |
>>> R.dmp_sqf_list(f) | |
(1, [(x + y, 2), (x, 3)]) | |
>>> R.dmp_sqf_list(f, all=True) | |
(1, [(1, 1), (x + y, 2), (x, 3)]) | |
Explanation | |
=========== | |
Uses Yun's algorithm for univariate polynomials from [Yun76]_ recrusively. | |
The multivariate polynomial is treated as a univariate polynomial in its | |
leading variable. Then Yun's algorithm computes the square-free | |
factorization of the primitive and the content is factored recursively. | |
It would be better to use a dedicated algorithm for multivariate | |
polynomials instead. | |
See Also | |
======== | |
dup_sqf_list: | |
Corresponding function for univariate polynomials. | |
sympy.polys.polytools.sqf_list: | |
High-level function for square-free factorization of expressions. | |
sympy.polys.polytools.Poly.sqf_list: | |
Analogous method on :class:`~.Poly`. | |
""" | |
if not u: | |
return dup_sqf_list(f, K, all=all) | |
if K.is_FiniteField: | |
return dmp_gf_sqf_list(f, u, K, all=all) | |
f_orig = f | |
if K.is_Field: | |
coeff = dmp_ground_LC(f, u, K) | |
f = dmp_ground_monic(f, u, K) | |
else: | |
coeff, f = dmp_ground_primitive(f, u, K) | |
if K.is_negative(dmp_ground_LC(f, u, K)): | |
f = dmp_neg(f, u, K) | |
coeff = -coeff | |
deg = dmp_degree(f, u) | |
if deg < 0: | |
return coeff, [] | |
# Yun's algorithm requires the polynomial to be primitive as a univariate | |
# polynomial in its main variable. | |
content, f = dmp_primitive(f, u, K) | |
result = {} | |
if deg != 0: | |
h = dmp_diff(f, 1, u, K) | |
g, p, q = dmp_inner_gcd(f, h, u, K) | |
i = 1 | |
while True: | |
d = dmp_diff(p, 1, u, K) | |
h = dmp_sub(q, d, u, K) | |
if dmp_zero_p(h, u): | |
result[i] = p | |
break | |
g, p, q = dmp_inner_gcd(p, h, u, K) | |
if all or dmp_degree(g, u) > 0: | |
result[i] = g | |
i += 1 | |
coeff_content, result_content = dmp_sqf_list(content, u-1, K, all=all) | |
coeff *= coeff_content | |
# Combine factors of the content and primitive part that have the same | |
# multiplicity to produce a list in ascending order of multiplicity. | |
for fac, i in result_content: | |
fac = [fac] | |
if i in result: | |
result[i] = dmp_mul(result[i], fac, u, K) | |
else: | |
result[i] = fac | |
result = [(result[i], i) for i in sorted(result)] | |
_dmp_check_degrees(f_orig, u, result) | |
return coeff, result | |
def dmp_sqf_list_include(f, u, K, all=False): | |
""" | |
Return square-free decomposition of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x**5 + 2*x**4*y + x**3*y**2 | |
>>> R.dmp_sqf_list_include(f) | |
[(1, 1), (x + y, 2), (x, 3)] | |
>>> R.dmp_sqf_list_include(f, all=True) | |
[(1, 1), (x + y, 2), (x, 3)] | |
""" | |
if not u: | |
return dup_sqf_list_include(f, K, all=all) | |
coeff, factors = dmp_sqf_list(f, u, K, all=all) | |
if factors and factors[0][1] == 1: | |
g = dmp_mul_ground(factors[0][0], coeff, u, K) | |
return [(g, 1)] + factors[1:] | |
else: | |
g = dmp_ground(coeff, u) | |
return [(g, 1)] + factors | |
def dup_gff_list(f, K): | |
""" | |
Compute greatest factorial factorization of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2) | |
[(x, 1), (x + 2, 4)] | |
""" | |
if not f: | |
raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial") | |
f = dup_monic(f, K) | |
if not dup_degree(f): | |
return [] | |
else: | |
g = dup_gcd(f, dup_shift(f, K.one, K), K) | |
H = dup_gff_list(g, K) | |
for i, (h, k) in enumerate(H): | |
g = dup_mul(g, dup_shift(h, -K(k), K), K) | |
H[i] = (h, k + 1) | |
f = dup_quo(f, g, K) | |
if not dup_degree(f): | |
return H | |
else: | |
return [(f, 1)] + H | |
def dmp_gff_list(f, u, K): | |
""" | |
Compute greatest factorial factorization of ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
""" | |
if not u: | |
return dup_gff_list(f, K) | |
else: | |
raise MultivariatePolynomialError(f) | |