Spaces:
Sleeping
Sleeping
"""Implementation of matrix FGLM Groebner basis conversion algorithm. """ | |
from sympy.polys.monomials import monomial_mul, monomial_div | |
def matrix_fglm(F, ring, O_to): | |
""" | |
Converts the reduced Groebner basis ``F`` of a zero-dimensional | |
ideal w.r.t. ``O_from`` to a reduced Groebner basis | |
w.r.t. ``O_to``. | |
References | |
========== | |
.. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient | |
Computation of Zero-dimensional Groebner Bases by Change of | |
Ordering | |
""" | |
domain = ring.domain | |
ngens = ring.ngens | |
ring_to = ring.clone(order=O_to) | |
old_basis = _basis(F, ring) | |
M = _representing_matrices(old_basis, F, ring) | |
# V contains the normalforms (wrt O_from) of S | |
S = [ring.zero_monom] | |
V = [[domain.one] + [domain.zero] * (len(old_basis) - 1)] | |
G = [] | |
L = [(i, 0) for i in range(ngens)] # (i, j) corresponds to x_i * S[j] | |
L.sort(key=lambda k_l: O_to(_incr_k(S[k_l[1]], k_l[0])), reverse=True) | |
t = L.pop() | |
P = _identity_matrix(len(old_basis), domain) | |
while True: | |
s = len(S) | |
v = _matrix_mul(M[t[0]], V[t[1]]) | |
_lambda = _matrix_mul(P, v) | |
if all(_lambda[i] == domain.zero for i in range(s, len(old_basis))): | |
# there is a linear combination of v by V | |
lt = ring.term_new(_incr_k(S[t[1]], t[0]), domain.one) | |
rest = ring.from_dict({S[i]: _lambda[i] for i in range(s)}) | |
g = (lt - rest).set_ring(ring_to) | |
if g: | |
G.append(g) | |
else: | |
# v is linearly independent from V | |
P = _update(s, _lambda, P) | |
S.append(_incr_k(S[t[1]], t[0])) | |
V.append(v) | |
L.extend([(i, s) for i in range(ngens)]) | |
L = list(set(L)) | |
L.sort(key=lambda k_l: O_to(_incr_k(S[k_l[1]], k_l[0])), reverse=True) | |
L = [(k, l) for (k, l) in L if all(monomial_div(_incr_k(S[l], k), g.LM) is None for g in G)] | |
if not L: | |
G = [ g.monic() for g in G ] | |
return sorted(G, key=lambda g: O_to(g.LM), reverse=True) | |
t = L.pop() | |
def _incr_k(m, k): | |
return tuple(list(m[:k]) + [m[k] + 1] + list(m[k + 1:])) | |
def _identity_matrix(n, domain): | |
M = [[domain.zero]*n for _ in range(n)] | |
for i in range(n): | |
M[i][i] = domain.one | |
return M | |
def _matrix_mul(M, v): | |
return [sum(row[i] * v[i] for i in range(len(v))) for row in M] | |
def _update(s, _lambda, P): | |
""" | |
Update ``P`` such that for the updated `P'` `P' v = e_{s}`. | |
""" | |
k = min(j for j in range(s, len(_lambda)) if _lambda[j] != 0) | |
for r in range(len(_lambda)): | |
if r != k: | |
P[r] = [P[r][j] - (P[k][j] * _lambda[r]) / _lambda[k] for j in range(len(P[r]))] | |
P[k] = [P[k][j] / _lambda[k] for j in range(len(P[k]))] | |
P[k], P[s] = P[s], P[k] | |
return P | |
def _representing_matrices(basis, G, ring): | |
r""" | |
Compute the matrices corresponding to the linear maps `m \mapsto | |
x_i m` for all variables `x_i`. | |
""" | |
domain = ring.domain | |
u = ring.ngens-1 | |
def var(i): | |
return tuple([0] * i + [1] + [0] * (u - i)) | |
def representing_matrix(m): | |
M = [[domain.zero] * len(basis) for _ in range(len(basis))] | |
for i, v in enumerate(basis): | |
r = ring.term_new(monomial_mul(m, v), domain.one).rem(G) | |
for monom, coeff in r.terms(): | |
j = basis.index(monom) | |
M[j][i] = coeff | |
return M | |
return [representing_matrix(var(i)) for i in range(u + 1)] | |
def _basis(G, ring): | |
r""" | |
Computes a list of monomials which are not divisible by the leading | |
monomials wrt to ``O`` of ``G``. These monomials are a basis of | |
`K[X_1, \ldots, X_n]/(G)`. | |
""" | |
order = ring.order | |
leading_monomials = [g.LM for g in G] | |
candidates = [ring.zero_monom] | |
basis = [] | |
while candidates: | |
t = candidates.pop() | |
basis.append(t) | |
new_candidates = [_incr_k(t, k) for k in range(ring.ngens) | |
if all(monomial_div(_incr_k(t, k), lmg) is None | |
for lmg in leading_monomials)] | |
candidates.extend(new_candidates) | |
candidates.sort(key=order, reverse=True) | |
basis = list(set(basis)) | |
return sorted(basis, key=order) | |