Spaces:
Sleeping
Sleeping
from sympy.core.symbol import symbols | |
from sympy.sets.sets import FiniteSet | |
from sympy.combinatorics.polyhedron import (Polyhedron, | |
tetrahedron, cube as square, octahedron, dodecahedron, icosahedron, | |
cube_faces) | |
from sympy.combinatorics.permutations import Permutation | |
from sympy.combinatorics.perm_groups import PermutationGroup | |
from sympy.testing.pytest import raises | |
rmul = Permutation.rmul | |
def test_polyhedron(): | |
raises(ValueError, lambda: Polyhedron(list('ab'), | |
pgroup=[Permutation([0])])) | |
pgroup = [Permutation([[0, 7, 2, 5], [6, 1, 4, 3]]), | |
Permutation([[0, 7, 1, 6], [5, 2, 4, 3]]), | |
Permutation([[3, 6, 0, 5], [4, 1, 7, 2]]), | |
Permutation([[7, 4, 5], [1, 3, 0], [2], [6]]), | |
Permutation([[1, 3, 2], [7, 6, 5], [4], [0]]), | |
Permutation([[4, 7, 6], [2, 0, 3], [1], [5]]), | |
Permutation([[1, 2, 0], [4, 5, 6], [3], [7]]), | |
Permutation([[4, 2], [0, 6], [3, 7], [1, 5]]), | |
Permutation([[3, 5], [7, 1], [2, 6], [0, 4]]), | |
Permutation([[2, 5], [1, 6], [0, 4], [3, 7]]), | |
Permutation([[4, 3], [7, 0], [5, 1], [6, 2]]), | |
Permutation([[4, 1], [0, 5], [6, 2], [7, 3]]), | |
Permutation([[7, 2], [3, 6], [0, 4], [1, 5]]), | |
Permutation([0, 1, 2, 3, 4, 5, 6, 7])] | |
corners = tuple(symbols('A:H')) | |
faces = cube_faces | |
cube = Polyhedron(corners, faces, pgroup) | |
assert cube.edges == FiniteSet(*( | |
(0, 1), (6, 7), (1, 2), (5, 6), (0, 3), (2, 3), | |
(4, 7), (4, 5), (3, 7), (1, 5), (0, 4), (2, 6))) | |
for i in range(3): # add 180 degree face rotations | |
cube.rotate(cube.pgroup[i]**2) | |
assert cube.corners == corners | |
for i in range(3, 7): # add 240 degree axial corner rotations | |
cube.rotate(cube.pgroup[i]**2) | |
assert cube.corners == corners | |
cube.rotate(1) | |
raises(ValueError, lambda: cube.rotate(Permutation([0, 1]))) | |
assert cube.corners != corners | |
assert cube.array_form == [7, 6, 4, 5, 3, 2, 0, 1] | |
assert cube.cyclic_form == [[0, 7, 1, 6], [2, 4, 3, 5]] | |
cube.reset() | |
assert cube.corners == corners | |
def check(h, size, rpt, target): | |
assert len(h.faces) + len(h.vertices) - len(h.edges) == 2 | |
assert h.size == size | |
got = set() | |
for p in h.pgroup: | |
# make sure it restores original | |
P = h.copy() | |
hit = P.corners | |
for i in range(rpt): | |
P.rotate(p) | |
if P.corners == hit: | |
break | |
else: | |
print('error in permutation', p.array_form) | |
for i in range(rpt): | |
P.rotate(p) | |
got.add(tuple(P.corners)) | |
c = P.corners | |
f = [[c[i] for i in f] for f in P.faces] | |
assert h.faces == Polyhedron(c, f).faces | |
assert len(got) == target | |
assert PermutationGroup([Permutation(g) for g in got]).is_group | |
for h, size, rpt, target in zip( | |
(tetrahedron, square, octahedron, dodecahedron, icosahedron), | |
(4, 8, 6, 20, 12), | |
(3, 4, 4, 5, 5), | |
(12, 24, 24, 60, 60)): | |
check(h, size, rpt, target) | |
def test_pgroups(): | |
from sympy.combinatorics.polyhedron import (cube, tetrahedron_faces, | |
octahedron_faces, dodecahedron_faces, icosahedron_faces) | |
from sympy.combinatorics.polyhedron import _pgroup_calcs | |
(tetrahedron2, cube2, octahedron2, dodecahedron2, icosahedron2, | |
tetrahedron_faces2, cube_faces2, octahedron_faces2, | |
dodecahedron_faces2, icosahedron_faces2) = _pgroup_calcs() | |
assert tetrahedron == tetrahedron2 | |
assert cube == cube2 | |
assert octahedron == octahedron2 | |
assert dodecahedron == dodecahedron2 | |
assert icosahedron == icosahedron2 | |
assert sorted(map(sorted, tetrahedron_faces)) == sorted(map(sorted, tetrahedron_faces2)) | |
assert sorted(cube_faces) == sorted(cube_faces2) | |
assert sorted(octahedron_faces) == sorted(octahedron_faces2) | |
assert sorted(dodecahedron_faces) == sorted(dodecahedron_faces2) | |
assert sorted(icosahedron_faces) == sorted(icosahedron_faces2) | |