Spaces:
Sleeping
Sleeping
File size: 21,757 Bytes
cf2a15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to manipulate TensorProtos."""
import numpy as np
from tensorboard.compat.proto import tensor_pb2
from tensorboard.compat.tensorflow_stub import dtypes, compat, tensor_shape
def ExtractBitsFromFloat16(x):
return np.asarray(x, dtype=np.float16).view(np.uint16).item()
def SlowAppendFloat16ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.half_val.extend(
[ExtractBitsFromFloat16(x) for x in proto_values]
)
def ExtractBitsFromBFloat16(x):
return (
np.asarray(x, dtype=dtypes.bfloat16.as_numpy_dtype)
.view(np.uint16)
.item()
)
def SlowAppendBFloat16ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.half_val.extend(
[ExtractBitsFromBFloat16(x) for x in proto_values]
)
def SlowAppendFloat32ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.float_val.extend([x.item() for x in proto_values])
def SlowAppendFloat64ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.double_val.extend([x.item() for x in proto_values])
def SlowAppendIntArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.int_val.extend([x.item() for x in proto_values])
def SlowAppendInt64ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.int64_val.extend([x.item() for x in proto_values])
def SlowAppendQIntArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.int_val.extend([x[0].item() for x in proto_values])
def SlowAppendUInt32ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.uint32_val.extend([x.item() for x in proto_values])
def SlowAppendUInt64ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.uint64_val.extend([x.item() for x in proto_values])
def SlowAppendComplex64ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.scomplex_val.extend(
[v.item() for x in proto_values for v in [x.real, x.imag]]
)
def SlowAppendComplex128ArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.dcomplex_val.extend(
[v.item() for x in proto_values for v in [x.real, x.imag]]
)
def SlowAppendObjectArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values])
def SlowAppendBoolArrayToTensorProto(tensor_proto, proto_values):
tensor_proto.bool_val.extend([x.item() for x in proto_values])
_NP_TO_APPEND_FN = {
np.float16: SlowAppendFloat16ArrayToTensorProto,
np.float32: SlowAppendFloat32ArrayToTensorProto,
np.float64: SlowAppendFloat64ArrayToTensorProto,
np.int32: SlowAppendIntArrayToTensorProto,
np.int64: SlowAppendInt64ArrayToTensorProto,
np.uint8: SlowAppendIntArrayToTensorProto,
np.uint16: SlowAppendIntArrayToTensorProto,
np.uint32: SlowAppendUInt32ArrayToTensorProto,
np.uint64: SlowAppendUInt64ArrayToTensorProto,
np.int8: SlowAppendIntArrayToTensorProto,
np.int16: SlowAppendIntArrayToTensorProto,
np.complex64: SlowAppendComplex64ArrayToTensorProto,
np.complex128: SlowAppendComplex128ArrayToTensorProto,
np.object_: SlowAppendObjectArrayToTensorProto,
np.bool_: SlowAppendBoolArrayToTensorProto,
dtypes.qint8.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
dtypes.quint8.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
dtypes.qint16.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
dtypes.quint16.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
dtypes.qint32.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
# NOTE(touts): Intentionally no way to feed a DT_BFLOAT16.
}
BACKUP_DICT = {
dtypes.bfloat16.as_numpy_dtype: SlowAppendBFloat16ArrayToTensorProto
}
def GetFromNumpyDTypeDict(dtype_dict, dtype):
# NOTE: dtype_dict.get(dtype) always returns None.
for key, val in dtype_dict.items():
if key == dtype:
return val
for key, val in BACKUP_DICT.items():
if key == dtype:
return val
return None
def GetNumpyAppendFn(dtype):
# numpy dtype for strings are variable length. We can not compare
# dtype with a single constant (np.string does not exist) to decide
# dtype is a "string" type. We need to compare the dtype.type to be
# sure it's a string type.
if dtype.type == np.string_ or dtype.type == np.unicode_:
return SlowAppendObjectArrayToTensorProto
return GetFromNumpyDTypeDict(_NP_TO_APPEND_FN, dtype)
def _GetDenseDimensions(list_of_lists):
"""Returns the inferred dense dimensions of a list of lists."""
if not isinstance(list_of_lists, (list, tuple)):
return []
elif not list_of_lists:
return [0]
else:
return [len(list_of_lists)] + _GetDenseDimensions(list_of_lists[0])
def _FlattenToStrings(nested_strings):
if isinstance(nested_strings, (list, tuple)):
for inner in nested_strings:
for flattened_string in _FlattenToStrings(inner):
yield flattened_string
else:
yield nested_strings
_TENSOR_CONTENT_TYPES = frozenset(
[
dtypes.float32,
dtypes.float64,
dtypes.int32,
dtypes.uint8,
dtypes.int16,
dtypes.int8,
dtypes.int64,
dtypes.qint8,
dtypes.quint8,
dtypes.qint16,
dtypes.quint16,
dtypes.qint32,
dtypes.uint32,
dtypes.uint64,
]
)
class _Message:
def __init__(self, message):
self._message = message
def __repr__(self):
return self._message
def _FirstNotNone(l):
for x in l:
if x is not None:
return x
return None
def _NotNone(v):
if v is None:
return _Message("None")
else:
return v
def _FilterTuple(v):
if not isinstance(v, (list, tuple)):
return v
if isinstance(v, tuple):
if not any(isinstance(x, (list, tuple)) for x in v):
return None
if isinstance(v, list):
if not any(isinstance(x, (list, tuple)) for x in v):
return _FirstNotNone(
[None if isinstance(x, (list, tuple)) else x for x in v]
)
return _FirstNotNone([_FilterTuple(x) for x in v])
def _FilterInt(v):
if isinstance(v, (list, tuple)):
return _FirstNotNone([_FilterInt(x) for x in v])
return (
None
if isinstance(v, (compat.integral_types, tensor_shape.Dimension))
else _NotNone(v)
)
def _FilterFloat(v):
if isinstance(v, (list, tuple)):
return _FirstNotNone([_FilterFloat(x) for x in v])
return None if isinstance(v, compat.real_types) else _NotNone(v)
def _FilterComplex(v):
if isinstance(v, (list, tuple)):
return _FirstNotNone([_FilterComplex(x) for x in v])
return None if isinstance(v, compat.complex_types) else _NotNone(v)
def _FilterStr(v):
if isinstance(v, (list, tuple)):
return _FirstNotNone([_FilterStr(x) for x in v])
if isinstance(v, compat.bytes_or_text_types):
return None
else:
return _NotNone(v)
def _FilterBool(v):
if isinstance(v, (list, tuple)):
return _FirstNotNone([_FilterBool(x) for x in v])
return None if isinstance(v, bool) else _NotNone(v)
_TF_TO_IS_OK = {
dtypes.bool: [_FilterBool],
dtypes.complex128: [_FilterComplex],
dtypes.complex64: [_FilterComplex],
dtypes.float16: [_FilterFloat],
dtypes.float32: [_FilterFloat],
dtypes.float64: [_FilterFloat],
dtypes.int16: [_FilterInt],
dtypes.int32: [_FilterInt],
dtypes.int64: [_FilterInt],
dtypes.int8: [_FilterInt],
dtypes.qint16: [_FilterInt, _FilterTuple],
dtypes.qint32: [_FilterInt, _FilterTuple],
dtypes.qint8: [_FilterInt, _FilterTuple],
dtypes.quint16: [_FilterInt, _FilterTuple],
dtypes.quint8: [_FilterInt, _FilterTuple],
dtypes.string: [_FilterStr],
dtypes.uint16: [_FilterInt],
dtypes.uint8: [_FilterInt],
}
def _Assertconvertible(values, dtype):
# If dtype is None or not recognized, assume it's convertible.
if dtype is None or dtype not in _TF_TO_IS_OK:
return
fn_list = _TF_TO_IS_OK.get(dtype)
mismatch = _FirstNotNone([fn(values) for fn in fn_list])
if mismatch is not None:
raise TypeError(
"Expected %s, got %s of type '%s' instead."
% (dtype.name, repr(mismatch), type(mismatch).__name__)
)
def make_tensor_proto(values, dtype=None, shape=None, verify_shape=False):
"""Create a TensorProto.
Args:
values: Values to put in the TensorProto.
dtype: Optional tensor_pb2 DataType value.
shape: List of integers representing the dimensions of tensor.
verify_shape: Boolean that enables verification of a shape of values.
Returns:
A `TensorProto`. Depending on the type, it may contain data in the
"tensor_content" attribute, which is not directly useful to Python programs.
To access the values you should convert the proto back to a numpy ndarray
with `tensor_util.MakeNdarray(proto)`.
If `values` is a `TensorProto`, it is immediately returned; `dtype` and
`shape` are ignored.
Raises:
TypeError: if unsupported types are provided.
ValueError: if arguments have inappropriate values or if verify_shape is
True and shape of values is not equals to a shape from the argument.
make_tensor_proto accepts "values" of a python scalar, a python list, a
numpy ndarray, or a numpy scalar.
If "values" is a python scalar or a python list, make_tensor_proto
first convert it to numpy ndarray. If dtype is None, the
conversion tries its best to infer the right numpy data
type. Otherwise, the resulting numpy array has a convertible data
type with the given dtype.
In either case above, the numpy ndarray (either the caller provided
or the auto converted) must have the convertible type with dtype.
make_tensor_proto then converts the numpy array to a tensor proto.
If "shape" is None, the resulting tensor proto represents the numpy
array precisely.
Otherwise, "shape" specifies the tensor's shape and the numpy array
can not have more elements than what "shape" specifies.
"""
if isinstance(values, tensor_pb2.TensorProto):
return values
if dtype:
dtype = dtypes.as_dtype(dtype)
is_quantized = dtype in [
dtypes.qint8,
dtypes.quint8,
dtypes.qint16,
dtypes.quint16,
dtypes.qint32,
]
# We first convert value to a numpy array or scalar.
if isinstance(values, (np.ndarray, np.generic)):
if dtype:
nparray = values.astype(dtype.as_numpy_dtype)
else:
nparray = values
elif callable(getattr(values, "__array__", None)) or isinstance(
getattr(values, "__array_interface__", None), dict
):
# If a class has the __array__ method, or __array_interface__ dict, then it
# is possible to convert to numpy array.
nparray = np.asarray(values, dtype=dtype)
# This is the preferred way to create an array from the object, so replace
# the `values` with the array so that _FlattenToStrings is not run.
values = nparray
else:
if values is None:
raise ValueError("None values not supported.")
# if dtype is provided, forces numpy array to be the type
# provided if possible.
if dtype and dtype.is_numpy_compatible:
np_dt = dtype.as_numpy_dtype
else:
np_dt = None
# If shape is None, numpy.prod returns None when dtype is not set, but raises
# exception when dtype is set to np.int64
if shape is not None and np.prod(shape, dtype=np.int64) == 0:
nparray = np.empty(shape, dtype=np_dt)
else:
_Assertconvertible(values, dtype)
nparray = np.array(values, dtype=np_dt)
# check to them.
# We need to pass in quantized values as tuples, so don't apply the shape
if (
list(nparray.shape) != _GetDenseDimensions(values)
and not is_quantized
):
raise ValueError(
"""Argument must be a dense tensor: %s"""
""" - got shape %s, but wanted %s."""
% (values, list(nparray.shape), _GetDenseDimensions(values))
)
# python/numpy default float type is float64. We prefer float32 instead.
if (nparray.dtype == np.float64) and dtype is None:
nparray = nparray.astype(np.float32)
# python/numpy default int type is int64. We prefer int32 instead.
elif (nparray.dtype == np.int64) and dtype is None:
downcasted_array = nparray.astype(np.int32)
# Do not down cast if it leads to precision loss.
if np.array_equal(downcasted_array, nparray):
nparray = downcasted_array
# if dtype is provided, it must be convertible with what numpy
# conversion says.
numpy_dtype = dtypes.as_dtype(nparray.dtype)
if numpy_dtype is None:
raise TypeError("Unrecognized data type: %s" % nparray.dtype)
# If dtype was specified and is a quantized type, we convert
# numpy_dtype back into the quantized version.
if is_quantized:
numpy_dtype = dtype
if dtype is not None and (
not hasattr(dtype, "base_dtype")
or dtype.base_dtype != numpy_dtype.base_dtype
):
raise TypeError(
"Inconvertible types: %s vs. %s. Value is %s"
% (dtype, nparray.dtype, values)
)
# If shape is not given, get the shape from the numpy array.
if shape is None:
shape = nparray.shape
is_same_size = True
shape_size = nparray.size
else:
shape = [int(dim) for dim in shape]
shape_size = np.prod(shape, dtype=np.int64)
is_same_size = shape_size == nparray.size
if verify_shape:
if not nparray.shape == tuple(shape):
raise TypeError(
"Expected Tensor's shape: %s, got %s."
% (tuple(shape), nparray.shape)
)
if nparray.size > shape_size:
raise ValueError(
"Too many elements provided. Needed at most %d, but received %d"
% (shape_size, nparray.size)
)
tensor_proto = tensor_pb2.TensorProto(
dtype=numpy_dtype.as_datatype_enum,
tensor_shape=tensor_shape.as_shape(shape).as_proto(),
)
if is_same_size and numpy_dtype in _TENSOR_CONTENT_TYPES and shape_size > 1:
if nparray.size * nparray.itemsize >= (1 << 31):
raise ValueError(
"Cannot create a tensor proto whose content is larger than 2GB."
)
tensor_proto.tensor_content = nparray.tobytes()
return tensor_proto
# If we were not given values as a numpy array, compute the proto_values
# from the given values directly, to avoid numpy trimming nulls from the
# strings. Since values could be a list of strings, or a multi-dimensional
# list of lists that might or might not correspond to the given shape,
# we flatten it conservatively.
if numpy_dtype == dtypes.string and not isinstance(values, np.ndarray):
proto_values = _FlattenToStrings(values)
# At this point, values may be a list of objects that we could not
# identify a common type for (hence it was inferred as
# np.object/dtypes.string). If we are unable to convert it to a
# string, we raise a more helpful error message.
#
# Ideally, we'd be able to convert the elements of the list to a
# common type, but this type inference requires some thinking and
# so we defer it for now.
try:
str_values = [compat.as_bytes(x) for x in proto_values]
except TypeError:
raise TypeError(
"Failed to convert object of type %s to Tensor. "
"Contents: %s. Consider casting elements to a "
"supported type." % (type(values), values)
)
tensor_proto.string_val.extend(str_values)
return tensor_proto
# TensorFlow expects C order (a.k.a., eigen row major).
proto_values = nparray.ravel()
append_fn = GetNumpyAppendFn(proto_values.dtype)
if append_fn is None:
raise TypeError(
"Element type not supported in TensorProto: %s" % numpy_dtype.name
)
append_fn(tensor_proto, proto_values)
return tensor_proto
def make_ndarray(tensor):
"""Create a numpy ndarray from a tensor.
Create a numpy ndarray with the same shape and data as the tensor.
Args:
tensor: A TensorProto.
Returns:
A numpy array with the tensor contents.
Raises:
TypeError: if tensor has unsupported type.
"""
shape = [d.size for d in tensor.tensor_shape.dim]
num_elements = np.prod(shape, dtype=np.int64)
tensor_dtype = dtypes.as_dtype(tensor.dtype)
dtype = tensor_dtype.as_numpy_dtype
if tensor.tensor_content:
return (
np.frombuffer(tensor.tensor_content, dtype=dtype)
.copy()
.reshape(shape)
)
elif tensor_dtype == dtypes.float16 or tensor_dtype == dtypes.bfloat16:
# the half_val field of the TensorProto stores the binary representation
# of the fp16: we need to reinterpret this as a proper float16
if len(tensor.half_val) == 1:
tmp = np.array(tensor.half_val[0], dtype=np.uint16)
tmp.dtype = tensor_dtype.as_numpy_dtype
return np.repeat(tmp, num_elements).reshape(shape)
else:
tmp = np.fromiter(tensor.half_val, dtype=np.uint16)
tmp.dtype = tensor_dtype.as_numpy_dtype
return tmp.reshape(shape)
elif tensor_dtype == dtypes.float32:
if len(tensor.float_val) == 1:
return np.repeat(
np.array(tensor.float_val[0], dtype=dtype), num_elements
).reshape(shape)
else:
return np.fromiter(tensor.float_val, dtype=dtype).reshape(shape)
elif tensor_dtype == dtypes.float64:
if len(tensor.double_val) == 1:
return np.repeat(
np.array(tensor.double_val[0], dtype=dtype), num_elements
).reshape(shape)
else:
return np.fromiter(tensor.double_val, dtype=dtype).reshape(shape)
elif tensor_dtype in [
dtypes.int32,
dtypes.uint8,
dtypes.uint16,
dtypes.int16,
dtypes.int8,
dtypes.qint32,
dtypes.quint8,
dtypes.qint8,
dtypes.qint16,
dtypes.quint16,
]:
if len(tensor.int_val) == 1:
return np.repeat(
np.array(tensor.int_val[0], dtype=dtype), num_elements
).reshape(shape)
else:
return np.fromiter(tensor.int_val, dtype=dtype).reshape(shape)
elif tensor_dtype == dtypes.int64:
if len(tensor.int64_val) == 1:
return np.repeat(
np.array(tensor.int64_val[0], dtype=dtype), num_elements
).reshape(shape)
else:
return np.fromiter(tensor.int64_val, dtype=dtype).reshape(shape)
elif tensor_dtype == dtypes.string:
if len(tensor.string_val) == 1:
return np.repeat(
np.array(tensor.string_val[0], dtype=dtype), num_elements
).reshape(shape)
else:
return np.array(list(tensor.string_val), dtype=dtype).reshape(shape)
elif tensor_dtype == dtypes.complex64:
it = iter(tensor.scomplex_val)
if len(tensor.scomplex_val) == 2:
return np.repeat(
np.array(
complex(tensor.scomplex_val[0], tensor.scomplex_val[1]),
dtype=dtype,
),
num_elements,
).reshape(shape)
else:
return np.array(
[complex(x[0], x[1]) for x in zip(it, it)], dtype=dtype
).reshape(shape)
elif tensor_dtype == dtypes.complex128:
it = iter(tensor.dcomplex_val)
if len(tensor.dcomplex_val) == 2:
return np.repeat(
np.array(
complex(tensor.dcomplex_val[0], tensor.dcomplex_val[1]),
dtype=dtype,
),
num_elements,
).reshape(shape)
else:
return np.array(
[complex(x[0], x[1]) for x in zip(it, it)], dtype=dtype
).reshape(shape)
elif tensor_dtype == dtypes.bool:
if len(tensor.bool_val) == 1:
return np.repeat(
np.array(tensor.bool_val[0], dtype=dtype), num_elements
).reshape(shape)
else:
return np.fromiter(tensor.bool_val, dtype=dtype).reshape(shape)
else:
raise TypeError("Unsupported tensor type: %s" % tensor.dtype)
|