File size: 21,757 Bytes
cf2a15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to manipulate TensorProtos."""

import numpy as np

from tensorboard.compat.proto import tensor_pb2
from tensorboard.compat.tensorflow_stub import dtypes, compat, tensor_shape


def ExtractBitsFromFloat16(x):
    return np.asarray(x, dtype=np.float16).view(np.uint16).item()


def SlowAppendFloat16ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.half_val.extend(
        [ExtractBitsFromFloat16(x) for x in proto_values]
    )


def ExtractBitsFromBFloat16(x):
    return (
        np.asarray(x, dtype=dtypes.bfloat16.as_numpy_dtype)
        .view(np.uint16)
        .item()
    )


def SlowAppendBFloat16ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.half_val.extend(
        [ExtractBitsFromBFloat16(x) for x in proto_values]
    )


def SlowAppendFloat32ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.float_val.extend([x.item() for x in proto_values])


def SlowAppendFloat64ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.double_val.extend([x.item() for x in proto_values])


def SlowAppendIntArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.int_val.extend([x.item() for x in proto_values])


def SlowAppendInt64ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.int64_val.extend([x.item() for x in proto_values])


def SlowAppendQIntArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.int_val.extend([x[0].item() for x in proto_values])


def SlowAppendUInt32ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.uint32_val.extend([x.item() for x in proto_values])


def SlowAppendUInt64ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.uint64_val.extend([x.item() for x in proto_values])


def SlowAppendComplex64ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.scomplex_val.extend(
        [v.item() for x in proto_values for v in [x.real, x.imag]]
    )


def SlowAppendComplex128ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.dcomplex_val.extend(
        [v.item() for x in proto_values for v in [x.real, x.imag]]
    )


def SlowAppendObjectArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values])


def SlowAppendBoolArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.bool_val.extend([x.item() for x in proto_values])


_NP_TO_APPEND_FN = {
    np.float16: SlowAppendFloat16ArrayToTensorProto,
    np.float32: SlowAppendFloat32ArrayToTensorProto,
    np.float64: SlowAppendFloat64ArrayToTensorProto,
    np.int32: SlowAppendIntArrayToTensorProto,
    np.int64: SlowAppendInt64ArrayToTensorProto,
    np.uint8: SlowAppendIntArrayToTensorProto,
    np.uint16: SlowAppendIntArrayToTensorProto,
    np.uint32: SlowAppendUInt32ArrayToTensorProto,
    np.uint64: SlowAppendUInt64ArrayToTensorProto,
    np.int8: SlowAppendIntArrayToTensorProto,
    np.int16: SlowAppendIntArrayToTensorProto,
    np.complex64: SlowAppendComplex64ArrayToTensorProto,
    np.complex128: SlowAppendComplex128ArrayToTensorProto,
    np.object_: SlowAppendObjectArrayToTensorProto,
    np.bool_: SlowAppendBoolArrayToTensorProto,
    dtypes.qint8.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
    dtypes.quint8.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
    dtypes.qint16.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
    dtypes.quint16.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
    dtypes.qint32.as_numpy_dtype: SlowAppendQIntArrayToTensorProto,
    # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16.
}

BACKUP_DICT = {
    dtypes.bfloat16.as_numpy_dtype: SlowAppendBFloat16ArrayToTensorProto
}


def GetFromNumpyDTypeDict(dtype_dict, dtype):
    # NOTE: dtype_dict.get(dtype) always returns None.
    for key, val in dtype_dict.items():
        if key == dtype:
            return val
    for key, val in BACKUP_DICT.items():
        if key == dtype:
            return val
    return None


def GetNumpyAppendFn(dtype):
    # numpy dtype for strings are variable length. We can not compare
    # dtype with a single constant (np.string does not exist) to decide
    # dtype is a "string" type. We need to compare the dtype.type to be
    # sure it's a string type.
    if dtype.type == np.string_ or dtype.type == np.unicode_:
        return SlowAppendObjectArrayToTensorProto
    return GetFromNumpyDTypeDict(_NP_TO_APPEND_FN, dtype)


def _GetDenseDimensions(list_of_lists):
    """Returns the inferred dense dimensions of a list of lists."""
    if not isinstance(list_of_lists, (list, tuple)):
        return []
    elif not list_of_lists:
        return [0]
    else:
        return [len(list_of_lists)] + _GetDenseDimensions(list_of_lists[0])


def _FlattenToStrings(nested_strings):
    if isinstance(nested_strings, (list, tuple)):
        for inner in nested_strings:
            for flattened_string in _FlattenToStrings(inner):
                yield flattened_string
    else:
        yield nested_strings


_TENSOR_CONTENT_TYPES = frozenset(
    [
        dtypes.float32,
        dtypes.float64,
        dtypes.int32,
        dtypes.uint8,
        dtypes.int16,
        dtypes.int8,
        dtypes.int64,
        dtypes.qint8,
        dtypes.quint8,
        dtypes.qint16,
        dtypes.quint16,
        dtypes.qint32,
        dtypes.uint32,
        dtypes.uint64,
    ]
)


class _Message:
    def __init__(self, message):
        self._message = message

    def __repr__(self):
        return self._message


def _FirstNotNone(l):
    for x in l:
        if x is not None:
            return x
    return None


def _NotNone(v):
    if v is None:
        return _Message("None")
    else:
        return v


def _FilterTuple(v):
    if not isinstance(v, (list, tuple)):
        return v
    if isinstance(v, tuple):
        if not any(isinstance(x, (list, tuple)) for x in v):
            return None
    if isinstance(v, list):
        if not any(isinstance(x, (list, tuple)) for x in v):
            return _FirstNotNone(
                [None if isinstance(x, (list, tuple)) else x for x in v]
            )
    return _FirstNotNone([_FilterTuple(x) for x in v])


def _FilterInt(v):
    if isinstance(v, (list, tuple)):
        return _FirstNotNone([_FilterInt(x) for x in v])
    return (
        None
        if isinstance(v, (compat.integral_types, tensor_shape.Dimension))
        else _NotNone(v)
    )


def _FilterFloat(v):
    if isinstance(v, (list, tuple)):
        return _FirstNotNone([_FilterFloat(x) for x in v])
    return None if isinstance(v, compat.real_types) else _NotNone(v)


def _FilterComplex(v):
    if isinstance(v, (list, tuple)):
        return _FirstNotNone([_FilterComplex(x) for x in v])
    return None if isinstance(v, compat.complex_types) else _NotNone(v)


def _FilterStr(v):
    if isinstance(v, (list, tuple)):
        return _FirstNotNone([_FilterStr(x) for x in v])
    if isinstance(v, compat.bytes_or_text_types):
        return None
    else:
        return _NotNone(v)


def _FilterBool(v):
    if isinstance(v, (list, tuple)):
        return _FirstNotNone([_FilterBool(x) for x in v])
    return None if isinstance(v, bool) else _NotNone(v)


_TF_TO_IS_OK = {
    dtypes.bool: [_FilterBool],
    dtypes.complex128: [_FilterComplex],
    dtypes.complex64: [_FilterComplex],
    dtypes.float16: [_FilterFloat],
    dtypes.float32: [_FilterFloat],
    dtypes.float64: [_FilterFloat],
    dtypes.int16: [_FilterInt],
    dtypes.int32: [_FilterInt],
    dtypes.int64: [_FilterInt],
    dtypes.int8: [_FilterInt],
    dtypes.qint16: [_FilterInt, _FilterTuple],
    dtypes.qint32: [_FilterInt, _FilterTuple],
    dtypes.qint8: [_FilterInt, _FilterTuple],
    dtypes.quint16: [_FilterInt, _FilterTuple],
    dtypes.quint8: [_FilterInt, _FilterTuple],
    dtypes.string: [_FilterStr],
    dtypes.uint16: [_FilterInt],
    dtypes.uint8: [_FilterInt],
}


def _Assertconvertible(values, dtype):
    # If dtype is None or not recognized, assume it's convertible.
    if dtype is None or dtype not in _TF_TO_IS_OK:
        return
    fn_list = _TF_TO_IS_OK.get(dtype)
    mismatch = _FirstNotNone([fn(values) for fn in fn_list])
    if mismatch is not None:
        raise TypeError(
            "Expected %s, got %s of type '%s' instead."
            % (dtype.name, repr(mismatch), type(mismatch).__name__)
        )


def make_tensor_proto(values, dtype=None, shape=None, verify_shape=False):
    """Create a TensorProto.

    Args:
      values:         Values to put in the TensorProto.
      dtype:          Optional tensor_pb2 DataType value.
      shape:          List of integers representing the dimensions of tensor.
      verify_shape:   Boolean that enables verification of a shape of values.

    Returns:
      A `TensorProto`. Depending on the type, it may contain data in the
      "tensor_content" attribute, which is not directly useful to Python programs.
      To access the values you should convert the proto back to a numpy ndarray
      with `tensor_util.MakeNdarray(proto)`.

      If `values` is a `TensorProto`, it is immediately returned; `dtype` and
      `shape` are ignored.

    Raises:
      TypeError:  if unsupported types are provided.
      ValueError: if arguments have inappropriate values or if verify_shape is
       True and shape of values is not equals to a shape from the argument.

    make_tensor_proto accepts "values" of a python scalar, a python list, a
    numpy ndarray, or a numpy scalar.

    If "values" is a python scalar or a python list, make_tensor_proto
    first convert it to numpy ndarray. If dtype is None, the
    conversion tries its best to infer the right numpy data
    type. Otherwise, the resulting numpy array has a convertible data
    type with the given dtype.

    In either case above, the numpy ndarray (either the caller provided
    or the auto converted) must have the convertible type with dtype.

    make_tensor_proto then converts the numpy array to a tensor proto.

    If "shape" is None, the resulting tensor proto represents the numpy
    array precisely.

    Otherwise, "shape" specifies the tensor's shape and the numpy array
    can not have more elements than what "shape" specifies.
    """
    if isinstance(values, tensor_pb2.TensorProto):
        return values

    if dtype:
        dtype = dtypes.as_dtype(dtype)

    is_quantized = dtype in [
        dtypes.qint8,
        dtypes.quint8,
        dtypes.qint16,
        dtypes.quint16,
        dtypes.qint32,
    ]

    # We first convert value to a numpy array or scalar.
    if isinstance(values, (np.ndarray, np.generic)):
        if dtype:
            nparray = values.astype(dtype.as_numpy_dtype)
        else:
            nparray = values
    elif callable(getattr(values, "__array__", None)) or isinstance(
        getattr(values, "__array_interface__", None), dict
    ):
        # If a class has the __array__ method, or __array_interface__ dict, then it
        # is possible to convert to numpy array.
        nparray = np.asarray(values, dtype=dtype)

        # This is the preferred way to create an array from the object, so replace
        # the `values` with the array so that _FlattenToStrings is not run.
        values = nparray
    else:
        if values is None:
            raise ValueError("None values not supported.")
        # if dtype is provided, forces numpy array to be the type
        # provided if possible.
        if dtype and dtype.is_numpy_compatible:
            np_dt = dtype.as_numpy_dtype
        else:
            np_dt = None
        # If shape is None, numpy.prod returns None when dtype is not set, but raises
        # exception when dtype is set to np.int64
        if shape is not None and np.prod(shape, dtype=np.int64) == 0:
            nparray = np.empty(shape, dtype=np_dt)
        else:
            _Assertconvertible(values, dtype)
            nparray = np.array(values, dtype=np_dt)
            # check to them.
            # We need to pass in quantized values as tuples, so don't apply the shape
            if (
                list(nparray.shape) != _GetDenseDimensions(values)
                and not is_quantized
            ):
                raise ValueError(
                    """Argument must be a dense tensor: %s"""
                    """ - got shape %s, but wanted %s."""
                    % (values, list(nparray.shape), _GetDenseDimensions(values))
                )

        # python/numpy default float type is float64. We prefer float32 instead.
        if (nparray.dtype == np.float64) and dtype is None:
            nparray = nparray.astype(np.float32)
        # python/numpy default int type is int64. We prefer int32 instead.
        elif (nparray.dtype == np.int64) and dtype is None:
            downcasted_array = nparray.astype(np.int32)
            # Do not down cast if it leads to precision loss.
            if np.array_equal(downcasted_array, nparray):
                nparray = downcasted_array

    # if dtype is provided, it must be convertible with what numpy
    # conversion says.
    numpy_dtype = dtypes.as_dtype(nparray.dtype)
    if numpy_dtype is None:
        raise TypeError("Unrecognized data type: %s" % nparray.dtype)

    # If dtype was specified and is a quantized type, we convert
    # numpy_dtype back into the quantized version.
    if is_quantized:
        numpy_dtype = dtype

    if dtype is not None and (
        not hasattr(dtype, "base_dtype")
        or dtype.base_dtype != numpy_dtype.base_dtype
    ):
        raise TypeError(
            "Inconvertible types: %s vs. %s. Value is %s"
            % (dtype, nparray.dtype, values)
        )

    # If shape is not given, get the shape from the numpy array.
    if shape is None:
        shape = nparray.shape
        is_same_size = True
        shape_size = nparray.size
    else:
        shape = [int(dim) for dim in shape]
        shape_size = np.prod(shape, dtype=np.int64)
        is_same_size = shape_size == nparray.size

        if verify_shape:
            if not nparray.shape == tuple(shape):
                raise TypeError(
                    "Expected Tensor's shape: %s, got %s."
                    % (tuple(shape), nparray.shape)
                )

        if nparray.size > shape_size:
            raise ValueError(
                "Too many elements provided. Needed at most %d, but received %d"
                % (shape_size, nparray.size)
            )

    tensor_proto = tensor_pb2.TensorProto(
        dtype=numpy_dtype.as_datatype_enum,
        tensor_shape=tensor_shape.as_shape(shape).as_proto(),
    )

    if is_same_size and numpy_dtype in _TENSOR_CONTENT_TYPES and shape_size > 1:
        if nparray.size * nparray.itemsize >= (1 << 31):
            raise ValueError(
                "Cannot create a tensor proto whose content is larger than 2GB."
            )
        tensor_proto.tensor_content = nparray.tobytes()
        return tensor_proto

    # If we were not given values as a numpy array, compute the proto_values
    # from the given values directly, to avoid numpy trimming nulls from the
    # strings. Since values could be a list of strings, or a multi-dimensional
    # list of lists that might or might not correspond to the given shape,
    # we flatten it conservatively.
    if numpy_dtype == dtypes.string and not isinstance(values, np.ndarray):
        proto_values = _FlattenToStrings(values)

        # At this point, values may be a list of objects that we could not
        # identify a common type for (hence it was inferred as
        # np.object/dtypes.string).  If we are unable to convert it to a
        # string, we raise a more helpful error message.
        #
        # Ideally, we'd be able to convert the elements of the list to a
        # common type, but this type inference requires some thinking and
        # so we defer it for now.
        try:
            str_values = [compat.as_bytes(x) for x in proto_values]
        except TypeError:
            raise TypeError(
                "Failed to convert object of type %s to Tensor. "
                "Contents: %s. Consider casting elements to a "
                "supported type." % (type(values), values)
            )
        tensor_proto.string_val.extend(str_values)
        return tensor_proto

    # TensorFlow expects C order (a.k.a., eigen row major).
    proto_values = nparray.ravel()

    append_fn = GetNumpyAppendFn(proto_values.dtype)
    if append_fn is None:
        raise TypeError(
            "Element type not supported in TensorProto: %s" % numpy_dtype.name
        )
    append_fn(tensor_proto, proto_values)

    return tensor_proto


def make_ndarray(tensor):
    """Create a numpy ndarray from a tensor.

    Create a numpy ndarray with the same shape and data as the tensor.

    Args:
      tensor: A TensorProto.

    Returns:
      A numpy array with the tensor contents.

    Raises:
      TypeError: if tensor has unsupported type.
    """
    shape = [d.size for d in tensor.tensor_shape.dim]
    num_elements = np.prod(shape, dtype=np.int64)
    tensor_dtype = dtypes.as_dtype(tensor.dtype)
    dtype = tensor_dtype.as_numpy_dtype

    if tensor.tensor_content:
        return (
            np.frombuffer(tensor.tensor_content, dtype=dtype)
            .copy()
            .reshape(shape)
        )
    elif tensor_dtype == dtypes.float16 or tensor_dtype == dtypes.bfloat16:
        # the half_val field of the TensorProto stores the binary representation
        # of the fp16: we need to reinterpret this as a proper float16
        if len(tensor.half_val) == 1:
            tmp = np.array(tensor.half_val[0], dtype=np.uint16)
            tmp.dtype = tensor_dtype.as_numpy_dtype
            return np.repeat(tmp, num_elements).reshape(shape)
        else:
            tmp = np.fromiter(tensor.half_val, dtype=np.uint16)
            tmp.dtype = tensor_dtype.as_numpy_dtype
            return tmp.reshape(shape)
    elif tensor_dtype == dtypes.float32:
        if len(tensor.float_val) == 1:
            return np.repeat(
                np.array(tensor.float_val[0], dtype=dtype), num_elements
            ).reshape(shape)
        else:
            return np.fromiter(tensor.float_val, dtype=dtype).reshape(shape)
    elif tensor_dtype == dtypes.float64:
        if len(tensor.double_val) == 1:
            return np.repeat(
                np.array(tensor.double_val[0], dtype=dtype), num_elements
            ).reshape(shape)
        else:
            return np.fromiter(tensor.double_val, dtype=dtype).reshape(shape)
    elif tensor_dtype in [
        dtypes.int32,
        dtypes.uint8,
        dtypes.uint16,
        dtypes.int16,
        dtypes.int8,
        dtypes.qint32,
        dtypes.quint8,
        dtypes.qint8,
        dtypes.qint16,
        dtypes.quint16,
    ]:
        if len(tensor.int_val) == 1:
            return np.repeat(
                np.array(tensor.int_val[0], dtype=dtype), num_elements
            ).reshape(shape)
        else:
            return np.fromiter(tensor.int_val, dtype=dtype).reshape(shape)
    elif tensor_dtype == dtypes.int64:
        if len(tensor.int64_val) == 1:
            return np.repeat(
                np.array(tensor.int64_val[0], dtype=dtype), num_elements
            ).reshape(shape)
        else:
            return np.fromiter(tensor.int64_val, dtype=dtype).reshape(shape)
    elif tensor_dtype == dtypes.string:
        if len(tensor.string_val) == 1:
            return np.repeat(
                np.array(tensor.string_val[0], dtype=dtype), num_elements
            ).reshape(shape)
        else:
            return np.array(list(tensor.string_val), dtype=dtype).reshape(shape)
    elif tensor_dtype == dtypes.complex64:
        it = iter(tensor.scomplex_val)
        if len(tensor.scomplex_val) == 2:
            return np.repeat(
                np.array(
                    complex(tensor.scomplex_val[0], tensor.scomplex_val[1]),
                    dtype=dtype,
                ),
                num_elements,
            ).reshape(shape)
        else:
            return np.array(
                [complex(x[0], x[1]) for x in zip(it, it)], dtype=dtype
            ).reshape(shape)
    elif tensor_dtype == dtypes.complex128:
        it = iter(tensor.dcomplex_val)
        if len(tensor.dcomplex_val) == 2:
            return np.repeat(
                np.array(
                    complex(tensor.dcomplex_val[0], tensor.dcomplex_val[1]),
                    dtype=dtype,
                ),
                num_elements,
            ).reshape(shape)
        else:
            return np.array(
                [complex(x[0], x[1]) for x in zip(it, it)], dtype=dtype
            ).reshape(shape)
    elif tensor_dtype == dtypes.bool:
        if len(tensor.bool_val) == 1:
            return np.repeat(
                np.array(tensor.bool_val[0], dtype=dtype), num_elements
            ).reshape(shape)
        else:
            return np.fromiter(tensor.bool_val, dtype=dtype).reshape(shape)
    else:
        raise TypeError("Unsupported tensor type: %s" % tensor.dtype)