Spaces:
Sleeping
Sleeping
File size: 10,307 Bytes
cf2a15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The TensorBoard Text plugin."""
import textwrap
# pylint: disable=g-bad-import-order
# Necessary for an internal test with special behavior for numpy.
import numpy as np
# pylint: enable=g-bad-import-order
from werkzeug import wrappers
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.data import provider
from tensorboard.plugins import base_plugin
from tensorboard.plugins.text import metadata
# HTTP routes
TAGS_ROUTE = "/tags"
TEXT_ROUTE = "/text"
WARNING_TEMPLATE = textwrap.dedent(
"""\
**Warning:** This text summary contained data of dimensionality %d, but only \
2d tables are supported. Showing a 2d slice of the data instead."""
)
_DEFAULT_DOWNSAMPLING = 100 # text tensors per time series
def make_table_row(contents, tag="td"):
"""Given an iterable of string contents, make a table row.
Args:
contents: An iterable yielding strings.
tag: The tag to place contents in. Defaults to 'td', you might want 'th'.
Returns:
A string containing the content strings, organized into a table row.
Example: make_table_row(['one', 'two', 'three']) == '''
<tr>
<td>one</td>
<td>two</td>
<td>three</td>
</tr>'''
"""
columns = ("<%s>%s</%s>\n" % (tag, s, tag) for s in contents)
return "<tr>\n" + "".join(columns) + "</tr>\n"
def make_table(contents, headers=None):
"""Given a numpy ndarray of strings, concatenate them into a html table.
Args:
contents: A np.ndarray of strings. May be 1d or 2d. In the 1d case, the
table is laid out vertically (i.e. row-major).
headers: A np.ndarray or list of string header names for the table.
Returns:
A string containing all of the content strings, organized into a table.
Raises:
ValueError: If contents is not a np.ndarray.
ValueError: If contents is not 1d or 2d.
ValueError: If contents is empty.
ValueError: If headers is present and not a list, tuple, or ndarray.
ValueError: If headers is not 1d.
ValueError: If number of elements in headers does not correspond to number
of columns in contents.
"""
if not isinstance(contents, np.ndarray):
raise ValueError("make_table contents must be a numpy ndarray")
if contents.ndim not in [1, 2]:
raise ValueError(
"make_table requires a 1d or 2d numpy array, was %dd"
% contents.ndim
)
if headers:
if isinstance(headers, (list, tuple)):
headers = np.array(headers)
if not isinstance(headers, np.ndarray):
raise ValueError(
"Could not convert headers %s into np.ndarray" % headers
)
if headers.ndim != 1:
raise ValueError("Headers must be 1d, is %dd" % headers.ndim)
expected_n_columns = contents.shape[1] if contents.ndim == 2 else 1
if headers.shape[0] != expected_n_columns:
raise ValueError(
"Number of headers %d must match number of columns %d"
% (headers.shape[0], expected_n_columns)
)
header = "<thead>\n%s</thead>\n" % make_table_row(headers, tag="th")
else:
header = ""
n_rows = contents.shape[0]
if contents.ndim == 1:
# If it's a vector, we need to wrap each element in a new list, otherwise
# we would turn the string itself into a row (see test code)
rows = (make_table_row([contents[i]]) for i in range(n_rows))
else:
rows = (make_table_row(contents[i, :]) for i in range(n_rows))
return "<table>\n%s<tbody>\n%s</tbody>\n</table>" % (header, "".join(rows))
def reduce_to_2d(arr):
"""Given a np.npdarray with nDims > 2, reduce it to 2d.
It does this by selecting the zeroth coordinate for every dimension greater
than two.
Args:
arr: a numpy ndarray of dimension at least 2.
Returns:
A two-dimensional subarray from the input array.
Raises:
ValueError: If the argument is not a numpy ndarray, or the dimensionality
is too low.
"""
if not isinstance(arr, np.ndarray):
raise ValueError("reduce_to_2d requires a numpy.ndarray")
ndims = len(arr.shape)
if ndims < 2:
raise ValueError("reduce_to_2d requires an array of dimensionality >=2")
# slice(None) is equivalent to `:`, so we take arr[0,0,...0,:,:]
slices = ([0] * (ndims - 2)) + [slice(None), slice(None)]
return arr[tuple(slices)]
def text_array_to_html(text_arr, enable_markdown):
"""Take a numpy.ndarray containing strings, and convert it into html.
If the ndarray contains a single scalar string, that string is converted to
html via our sanitized markdown parser. If it contains an array of strings,
the strings are individually converted to html and then composed into a table
using make_table. If the array contains dimensionality greater than 2,
all but two of the dimensions are removed, and a warning message is prefixed
to the table.
Args:
text_arr: A numpy.ndarray containing strings.
enable_markdown: boolean, whether to enable Markdown
Returns:
The array converted to html.
"""
if not text_arr.shape:
# It is a scalar. No need to put it in a table.
if enable_markdown:
return plugin_util.markdown_to_safe_html(text_arr.item())
else:
return plugin_util.safe_html(text_arr.item())
warning = ""
if len(text_arr.shape) > 2:
warning = plugin_util.markdown_to_safe_html(
WARNING_TEMPLATE % len(text_arr.shape)
)
text_arr = reduce_to_2d(text_arr)
if enable_markdown:
table = plugin_util.markdowns_to_safe_html(
text_arr.reshape(-1),
lambda xs: make_table(np.array(xs).reshape(text_arr.shape)),
)
else:
# Convert utf-8 bytes to str. The built-in np.char.decode doesn't work on
# object arrays, and converting to an numpy chararray is lossy.
decode = lambda bs: bs.decode("utf-8") if isinstance(bs, bytes) else bs
text_arr_str = np.array(
[decode(bs) for bs in text_arr.reshape(-1)]
).reshape(text_arr.shape)
table = plugin_util.safe_html(make_table(text_arr_str))
return warning + table
def process_event(wall_time, step, string_ndarray, enable_markdown):
"""Convert a text event into a JSON-compatible response."""
html = text_array_to_html(string_ndarray, enable_markdown)
return {
"wall_time": wall_time,
"step": step,
"text": html,
}
class TextPlugin(base_plugin.TBPlugin):
"""Text Plugin for TensorBoard."""
plugin_name = metadata.PLUGIN_NAME
def __init__(self, context):
"""Instantiates TextPlugin via TensorBoard core.
Args:
context: A base_plugin.TBContext instance.
"""
self._downsample_to = (context.sampling_hints or {}).get(
self.plugin_name, _DEFAULT_DOWNSAMPLING
)
self._data_provider = context.data_provider
self._version_checker = plugin_util._MetadataVersionChecker(
data_kind="text",
latest_known_version=0,
)
def is_active(self):
return False # `list_plugins` as called by TB core suffices
def frontend_metadata(self):
return base_plugin.FrontendMetadata(element_name="tf-text-dashboard")
def index_impl(self, ctx, experiment):
mapping = self._data_provider.list_tensors(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME,
)
result = {run: [] for run in mapping}
for run, tag_to_content in mapping.items():
for tag, metadatum in tag_to_content.items():
md = metadata.parse_plugin_metadata(metadatum.plugin_content)
if not self._version_checker.ok(md.version, run, tag):
continue
result[run].append(tag)
return result
@wrappers.Request.application
def tags_route(self, request):
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
index = self.index_impl(ctx, experiment)
return http_util.Respond(request, index, "application/json")
def text_impl(self, ctx, run, tag, experiment, enable_markdown):
all_text = self._data_provider.read_tensors(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME,
downsample=self._downsample_to,
run_tag_filter=provider.RunTagFilter(runs=[run], tags=[tag]),
)
text = all_text.get(run, {}).get(tag, None)
if text is None:
return []
return [
process_event(d.wall_time, d.step, d.numpy, enable_markdown)
for d in text
]
@wrappers.Request.application
def text_route(self, request):
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
run = request.args.get("run")
tag = request.args.get("tag")
markdown_arg = request.args.get("markdown")
enable_markdown = markdown_arg != "false" # Default to enabled.
response = self.text_impl(ctx, run, tag, experiment, enable_markdown)
return http_util.Respond(request, response, "application/json")
def get_plugin_apps(self):
return {
TAGS_ROUTE: self.tags_route,
TEXT_ROUTE: self.text_route,
}
|