File size: 22,365 Bytes
cf2a15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The TensorBoard metrics plugin."""


import collections
import imghdr
import json

from werkzeug import wrappers

from tensorboard import errors
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.data import provider
from tensorboard.plugins import base_plugin
from tensorboard.plugins.histogram import metadata as histogram_metadata
from tensorboard.plugins.image import metadata as image_metadata
from tensorboard.plugins.metrics import metadata
from tensorboard.plugins.scalar import metadata as scalar_metadata


_IMGHDR_TO_MIMETYPE = {
    "bmp": "image/bmp",
    "gif": "image/gif",
    "jpeg": "image/jpeg",
    "png": "image/png",
    "svg": "image/svg+xml",
}

_DEFAULT_IMAGE_MIMETYPE = "application/octet-stream"

_SINGLE_RUN_PLUGINS = frozenset(
    [histogram_metadata.PLUGIN_NAME, image_metadata.PLUGIN_NAME]
)

_SAMPLED_PLUGINS = frozenset([image_metadata.PLUGIN_NAME])


def _get_tag_description_info(mapping):
    """Gets maps from tags to descriptions, and descriptions to runs.

    Args:
        mapping: a nested map `d` such that `d[run][tag]` is a time series
          produced by DataProvider's `list_*` methods.

    Returns:
        A tuple containing
            tag_to_descriptions: A map from tag strings to a set of description
                strings.
            description_to_runs: A map from description strings to a set of run
                strings.
    """
    tag_to_descriptions = collections.defaultdict(set)
    description_to_runs = collections.defaultdict(set)
    for run, tag_to_content in mapping.items():
        for tag, metadatum in tag_to_content.items():
            description = metadatum.description
            if len(description):
                tag_to_descriptions[tag].add(description)
                description_to_runs[description].add(run)

    return tag_to_descriptions, description_to_runs


def _build_combined_description(descriptions, description_to_runs):
    """Creates a single description from a set of descriptions.

    Descriptions may be composites when a single tag has different descriptions
    across multiple runs.

    Args:
        descriptions: A list of description strings.
        description_to_runs: A map from description strings to a set of run
            strings.

    Returns:
        The combined description string.
    """
    prefixed_descriptions = []
    for description in descriptions:
        runs = sorted(description_to_runs[description])
        run_or_runs = "runs" if len(runs) > 1 else "run"
        run_header = "## For " + run_or_runs + ": " + ", ".join(runs)
        description_html = run_header + "\n" + description
        prefixed_descriptions.append(description_html)

    header = "# Multiple descriptions\n"
    return header + "\n".join(prefixed_descriptions)


def _get_tag_to_description(mapping):
    """Returns a map of tags to descriptions.

    Args:
        mapping: a nested map `d` such that `d[run][tag]` is a time series
          produced by DataProvider's `list_*` methods.

    Returns:
        A map from tag strings to description HTML strings. E.g.
        {
            "loss": "<h1>Multiple descriptions</h1><h2>For runs: test, train
            </h2><p>...</p>",
            "loss2": "<p>The lossy details</p>",
        }
    """
    tag_to_descriptions, description_to_runs = _get_tag_description_info(
        mapping
    )

    result = {}
    for tag in tag_to_descriptions:
        descriptions = sorted(tag_to_descriptions[tag])
        if len(descriptions) == 1:
            description = descriptions[0]
        else:
            description = _build_combined_description(
                descriptions, description_to_runs
            )
        result[tag] = plugin_util.markdown_to_safe_html(description)

    return result


def _get_run_tag_info(mapping):
    """Returns a map of run names to a list of tag names.

    Args:
        mapping: a nested map `d` such that `d[run][tag]` is a time series
          produced by DataProvider's `list_*` methods.

    Returns:
        A map from run strings to a list of tag strings. E.g.
            {"loss001a": ["actor/loss", "critic/loss"], ...}
    """
    return {run: sorted(mapping[run]) for run in mapping}


def _format_basic_mapping(mapping):
    """Prepares a scalar or histogram mapping for client consumption.

    Args:
        mapping: a nested map `d` such that `d[run][tag]` is a time series
          produced by DataProvider's `list_*` methods.

    Returns:
        A dict with the following fields:
            runTagInfo: the return type of `_get_run_tag_info`
            tagDescriptions: the return type of `_get_tag_to_description`
    """
    return {
        "runTagInfo": _get_run_tag_info(mapping),
        "tagDescriptions": _get_tag_to_description(mapping),
    }


def _format_image_blob_sequence_datum(sorted_datum_list, sample):
    """Formats image metadata from a list of BlobSequenceDatum's for clients.

    This expects that frontend clients need to access images based on the
    run+tag+sample.

    Args:
        sorted_datum_list: a list of DataProvider's `BlobSequenceDatum`, sorted by
            step. This can be produced via DataProvider's `read_blob_sequences`.
        sample: zero-indexed integer for the requested sample.

    Returns:
        A list of `ImageStepDatum` (see http_api.md).
    """
    # For images, ignore the first 2 items of a BlobSequenceDatum's values, which
    # correspond to width, height.
    index = sample + 2
    step_data = []
    for datum in sorted_datum_list:
        if len(datum.values) <= index:
            continue

        step_data.append(
            {
                "step": datum.step,
                "wallTime": datum.wall_time,
                "imageId": datum.values[index].blob_key,
            }
        )
    return step_data


def _get_tag_run_image_info(mapping):
    """Returns a map of tag names to run information.

    Args:
        mapping: the result of DataProvider's `list_blob_sequences`.

    Returns:
        A nested map from run strings to tag string to image info, where image
        info is an object of form {"maxSamplesPerStep": num}. For example,
        {
            "reshaped": {
                "test": {"maxSamplesPerStep": 1},
                "train": {"maxSamplesPerStep": 1}
            },
            "convolved": {"test": {"maxSamplesPerStep": 50}},
        }
    """
    tag_run_image_info = collections.defaultdict(dict)
    for run, tag_to_content in mapping.items():
        for tag, metadatum in tag_to_content.items():
            tag_run_image_info[tag][run] = {
                "maxSamplesPerStep": metadatum.max_length - 2  # width, height
            }
    return dict(tag_run_image_info)


def _format_image_mapping(mapping):
    """Prepares an image mapping for client consumption.

    Args:
        mapping: the result of DataProvider's `list_blob_sequences`.

    Returns:
        A dict with the following fields:
            tagRunSampledInfo: the return type of `_get_tag_run_image_info`
            tagDescriptions: the return type of `_get_tag_description_info`
    """
    return {
        "tagDescriptions": _get_tag_to_description(mapping),
        "tagRunSampledInfo": _get_tag_run_image_info(mapping),
    }


class MetricsPlugin(base_plugin.TBPlugin):
    """Metrics Plugin for TensorBoard."""

    plugin_name = metadata.PLUGIN_NAME

    def __init__(self, context):
        """Instantiates MetricsPlugin.

        Args:
            context: A base_plugin.TBContext instance. MetricsLoader checks that
                it contains a valid `data_provider`.
        """
        self._data_provider = context.data_provider

        # For histograms, use a round number + 1 since sampling includes both start
        # and end steps, so N+1 samples corresponds to dividing the step sequence
        # into N intervals.
        sampling_hints = context.sampling_hints or {}
        self._plugin_downsampling = {
            "scalars": sampling_hints.get(scalar_metadata.PLUGIN_NAME, 1000),
            "histograms": sampling_hints.get(
                histogram_metadata.PLUGIN_NAME, 51
            ),
            "images": sampling_hints.get(image_metadata.PLUGIN_NAME, 10),
        }
        self._scalar_version_checker = plugin_util._MetadataVersionChecker(
            data_kind="scalar time series",
            latest_known_version=0,
        )
        self._histogram_version_checker = plugin_util._MetadataVersionChecker(
            data_kind="histogram time series",
            latest_known_version=0,
        )
        self._image_version_checker = plugin_util._MetadataVersionChecker(
            data_kind="image time series",
            latest_known_version=0,
        )

    def frontend_metadata(self):
        return base_plugin.FrontendMetadata(
            is_ng_component=True, tab_name="Time Series"
        )

    def get_plugin_apps(self):
        return {
            "/tags": self._serve_tags,
            "/timeSeries": self._serve_time_series,
            "/imageData": self._serve_image_data,
        }

    def data_plugin_names(self):
        return (
            scalar_metadata.PLUGIN_NAME,
            histogram_metadata.PLUGIN_NAME,
            image_metadata.PLUGIN_NAME,
        )

    def is_active(self):
        return False  # 'data_plugin_names' suffices.

    @wrappers.Request.application
    def _serve_tags(self, request):
        ctx = plugin_util.context(request.environ)
        experiment = plugin_util.experiment_id(request.environ)
        index = self._tags_impl(ctx, experiment=experiment)
        return http_util.Respond(request, index, "application/json")

    def _tags_impl(self, ctx, experiment=None):
        """Returns tag metadata for a given experiment's logged metrics.

        Args:
            ctx: A `tensorboard.context.RequestContext` value.
            experiment: optional string ID of the request's experiment.

        Returns:
            A nested dict 'd' with keys in ("scalars", "histograms", "images")
                and values being the return type of _format_*mapping.
        """
        scalar_mapping = self._data_provider.list_scalars(
            ctx,
            experiment_id=experiment,
            plugin_name=scalar_metadata.PLUGIN_NAME,
        )
        scalar_mapping = self._filter_by_version(
            scalar_mapping,
            scalar_metadata.parse_plugin_metadata,
            self._scalar_version_checker,
        )

        histogram_mapping = self._data_provider.list_tensors(
            ctx,
            experiment_id=experiment,
            plugin_name=histogram_metadata.PLUGIN_NAME,
        )
        if histogram_mapping is None:
            histogram_mapping = {}
        histogram_mapping = self._filter_by_version(
            histogram_mapping,
            histogram_metadata.parse_plugin_metadata,
            self._histogram_version_checker,
        )

        image_mapping = self._data_provider.list_blob_sequences(
            ctx,
            experiment_id=experiment,
            plugin_name=image_metadata.PLUGIN_NAME,
        )
        if image_mapping is None:
            image_mapping = {}
        image_mapping = self._filter_by_version(
            image_mapping,
            image_metadata.parse_plugin_metadata,
            self._image_version_checker,
        )

        result = {}
        result["scalars"] = _format_basic_mapping(scalar_mapping)
        result["histograms"] = _format_basic_mapping(histogram_mapping)
        result["images"] = _format_image_mapping(image_mapping)
        return result

    def _filter_by_version(self, mapping, parse_metadata, version_checker):
        """Filter `DataProvider.list_*` output by summary metadata version."""
        result = {run: {} for run in mapping}
        for run, tag_to_content in mapping.items():
            for tag, metadatum in tag_to_content.items():
                md = parse_metadata(metadatum.plugin_content)
                if not version_checker.ok(md.version, run, tag):
                    continue
                result[run][tag] = metadatum
        return result

    @wrappers.Request.application
    def _serve_time_series(self, request):
        ctx = plugin_util.context(request.environ)
        experiment = plugin_util.experiment_id(request.environ)
        if request.method == "POST":
            series_requests_string = request.form.get("requests")
        else:
            series_requests_string = request.args.get("requests")
        if not series_requests_string:
            raise errors.InvalidArgumentError("Missing 'requests' field")
        try:
            series_requests = json.loads(series_requests_string)
        except ValueError:
            raise errors.InvalidArgumentError(
                "Unable to parse 'requests' as JSON"
            )

        response = self._time_series_impl(ctx, experiment, series_requests)
        return http_util.Respond(request, response, "application/json")

    def _time_series_impl(self, ctx, experiment, series_requests):
        """Constructs a list of responses from a list of series requests.

        Args:
            ctx: A `tensorboard.context.RequestContext` value.
            experiment: string ID of the request's experiment.
            series_requests: a list of `TimeSeriesRequest` dicts (see http_api.md).

        Returns:
            A list of `TimeSeriesResponse` dicts (see http_api.md).
        """
        responses = [
            self._get_time_series(ctx, experiment, request)
            for request in series_requests
        ]
        return responses

    def _create_base_response(self, series_request):
        tag = series_request.get("tag")
        run = series_request.get("run")
        plugin = series_request.get("plugin")
        sample = series_request.get("sample")
        response = {"plugin": plugin, "tag": tag}
        if isinstance(run, str):
            response["run"] = run
        if isinstance(sample, int):
            response["sample"] = sample

        return response

    def _get_invalid_request_error(self, series_request):
        tag = series_request.get("tag")
        plugin = series_request.get("plugin")
        run = series_request.get("run")
        sample = series_request.get("sample")

        if not isinstance(tag, str):
            return "Missing tag"

        if (
            plugin != scalar_metadata.PLUGIN_NAME
            and plugin != histogram_metadata.PLUGIN_NAME
            and plugin != image_metadata.PLUGIN_NAME
        ):
            return "Invalid plugin"

        if plugin in _SINGLE_RUN_PLUGINS and not isinstance(run, str):
            return "Missing run"

        if plugin in _SAMPLED_PLUGINS and not isinstance(sample, int):
            return "Missing sample"

        return None

    def _get_time_series(self, ctx, experiment, series_request):
        """Returns time series data for a given tag, plugin.

        Args:
            ctx: A `tensorboard.context.RequestContext` value.
            experiment: string ID of the request's experiment.
            series_request: a `TimeSeriesRequest` (see http_api.md).

        Returns:
            A `TimeSeriesResponse` dict (see http_api.md).
        """
        tag = series_request.get("tag")
        run = series_request.get("run")
        plugin = series_request.get("plugin")
        sample = series_request.get("sample")
        response = self._create_base_response(series_request)
        request_error = self._get_invalid_request_error(series_request)
        if request_error:
            response["error"] = request_error
            return response

        runs = [run] if run else None
        run_to_series = None
        if plugin == scalar_metadata.PLUGIN_NAME:
            run_to_series = self._get_run_to_scalar_series(
                ctx, experiment, tag, runs
            )

        if plugin == histogram_metadata.PLUGIN_NAME:
            run_to_series = self._get_run_to_histogram_series(
                ctx, experiment, tag, runs
            )

        if plugin == image_metadata.PLUGIN_NAME:
            run_to_series = self._get_run_to_image_series(
                ctx, experiment, tag, sample, runs
            )

        response["runToSeries"] = run_to_series
        return response

    def _get_run_to_scalar_series(self, ctx, experiment, tag, runs):
        """Builds a run-to-scalar-series dict for client consumption.

        Args:
            ctx: A `tensorboard.context.RequestContext` value.
            experiment: a string experiment id.
            tag: string of the requested tag.
            runs: optional list of run names as strings.

        Returns:
            A map from string run names to `ScalarStepDatum` (see http_api.md).
        """
        mapping = self._data_provider.read_scalars(
            ctx,
            experiment_id=experiment,
            plugin_name=scalar_metadata.PLUGIN_NAME,
            downsample=self._plugin_downsampling["scalars"],
            run_tag_filter=provider.RunTagFilter(runs=runs, tags=[tag]),
        )

        run_to_series = {}
        for result_run, tag_data in mapping.items():
            if tag not in tag_data:
                continue
            values = [
                {
                    "wallTime": datum.wall_time,
                    "step": datum.step,
                    "value": datum.value,
                }
                for datum in tag_data[tag]
            ]
            run_to_series[result_run] = values

        return run_to_series

    def _format_histogram_datum_bins(self, datum):
        """Formats a histogram datum's bins for client consumption.

        Args:
            datum: a DataProvider's TensorDatum.

        Returns:
            A list of `HistogramBin`s (see http_api.md).
        """
        numpy_list = datum.numpy.tolist()
        bins = [{"min": x[0], "max": x[1], "count": x[2]} for x in numpy_list]
        return bins

    def _get_run_to_histogram_series(self, ctx, experiment, tag, runs):
        """Builds a run-to-histogram-series dict for client consumption.

        Args:
            ctx: A `tensorboard.context.RequestContext` value.
            experiment: a string experiment id.
            tag: string of the requested tag.
            runs: optional list of run names as strings.

        Returns:
            A map from string run names to `HistogramStepDatum` (see http_api.md).
        """
        mapping = self._data_provider.read_tensors(
            ctx,
            experiment_id=experiment,
            plugin_name=histogram_metadata.PLUGIN_NAME,
            downsample=self._plugin_downsampling["histograms"],
            run_tag_filter=provider.RunTagFilter(runs=runs, tags=[tag]),
        )

        run_to_series = {}
        for result_run, tag_data in mapping.items():
            if tag not in tag_data:
                continue
            values = [
                {
                    "wallTime": datum.wall_time,
                    "step": datum.step,
                    "bins": self._format_histogram_datum_bins(datum),
                }
                for datum in tag_data[tag]
            ]
            run_to_series[result_run] = values

        return run_to_series

    def _get_run_to_image_series(self, ctx, experiment, tag, sample, runs):
        """Builds a run-to-image-series dict for client consumption.

        Args:
            ctx: A `tensorboard.context.RequestContext` value.
            experiment: a string experiment id.
            tag: string of the requested tag.
            sample: zero-indexed integer for the requested sample.
            runs: optional list of run names as strings.

        Returns:
            A `RunToSeries` dict (see http_api.md).
        """
        mapping = self._data_provider.read_blob_sequences(
            ctx,
            experiment_id=experiment,
            plugin_name=image_metadata.PLUGIN_NAME,
            downsample=self._plugin_downsampling["images"],
            run_tag_filter=provider.RunTagFilter(runs, tags=[tag]),
        )

        run_to_series = {}
        for result_run, tag_data in mapping.items():
            if tag not in tag_data:
                continue
            blob_sequence_datum_list = tag_data[tag]
            series = _format_image_blob_sequence_datum(
                blob_sequence_datum_list, sample
            )
            if series:
                run_to_series[result_run] = series

        return run_to_series

    @wrappers.Request.application
    def _serve_image_data(self, request):
        """Serves an individual image."""
        ctx = plugin_util.context(request.environ)
        blob_key = request.args["imageId"]
        if not blob_key:
            raise errors.InvalidArgumentError("Missing 'imageId' field")

        (data, content_type) = self._image_data_impl(ctx, blob_key)
        return http_util.Respond(request, data, content_type)

    def _image_data_impl(self, ctx, blob_key):
        """Gets the image data for a blob key.

        Args:
            ctx: A `tensorboard.context.RequestContext` value.
            blob_key: a string identifier for a DataProvider blob.

        Returns:
            A tuple containing:
              data: a raw bytestring of the requested image's contents.
              content_type: a string HTTP content type.
        """
        data = self._data_provider.read_blob(ctx, blob_key=blob_key)
        image_type = imghdr.what(None, data)
        content_type = _IMGHDR_TO_MIMETYPE.get(
            image_type, _DEFAULT_IMAGE_MIMETYPE
        )
        return (data, content_type)