File size: 5,754 Bytes
cf2a15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image summaries and TensorFlow operations to create them, V2 versions.

An image summary stores the width, height, and PNG-encoded data for zero
or more images in a rank-1 string array: `[w, h, png0, png1, ...]`.
"""


from tensorboard.compat import tf2 as tf
from tensorboard.plugins.image import metadata
from tensorboard.util import lazy_tensor_creator


def image(name, data, step=None, max_outputs=3, description=None):
    """Write an image summary.

    See also `tf.summary.scalar`, `tf.summary.SummaryWriter`.

    Writes a collection of images to the current default summary writer. Data
    appears in TensorBoard's 'Images' dashboard. Like `tf.summary.scalar` points,
    each collection of images is associated with a `step` and a `name`.  All the
    image collections with the same `name` constitute a time series of image
    collections.

    This example writes 2 random grayscale images:

    ```python
    w = tf.summary.create_file_writer('test/logs')
    with w.as_default():
      image1 = tf.random.uniform(shape=[8, 8, 1])
      image2 = tf.random.uniform(shape=[8, 8, 1])
      tf.summary.image("grayscale_noise", [image1, image2], step=0)
    ```

    To avoid clipping, data should be converted to one of the following:

    - floating point values in the range [0,1], or
    - uint8 values in the range [0,255]

    ```python
    # Convert the original dtype=int32 `Tensor` into `dtype=float64`.
    rgb_image_float = tf.constant([
      [[1000, 0, 0], [0, 500, 1000]],
    ]) / 1000
    tf.summary.image("picture", [rgb_image_float], step=0)

    # Convert original dtype=uint8 `Tensor` into proper range.
    rgb_image_uint8 = tf.constant([
      [[1, 1, 0], [0, 0, 1]],
    ], dtype=tf.uint8) * 255
    tf.summary.image("picture", [rgb_image_uint8], step=1)
    ```

    Arguments:
      name: A name for this summary. The summary tag used for TensorBoard will
        be this name prefixed by any active name scopes.
      data: A `Tensor` representing pixel data with shape `[k, h, w, c]`,
        where `k` is the number of images, `h` and `w` are the height and
        width of the images, and `c` is the number of channels, which
        should be 1, 2, 3, or 4 (grayscale, grayscale with alpha, RGB, RGBA).
        Any of the dimensions may be statically unknown (i.e., `None`).
        Floating point data will be clipped to the range [0,1]. Other data types
        will be clipped into an allowed range for safe casting to uint8, using
        `tf.image.convert_image_dtype`.
      step: Explicit `int64`-castable monotonic step value for this summary. If
        omitted, this defaults to `tf.summary.experimental.get_step()`, which must
        not be None.
      max_outputs: Optional `int` or rank-0 integer `Tensor`. At most this
        many images will be emitted at each step. When more than
        `max_outputs` many images are provided, the first `max_outputs` many
        images will be used and the rest silently discarded.
      description: Optional long-form description for this summary, as a
        constant `str`. Markdown is supported. Defaults to empty.

    Returns:
      True on success, or false if no summary was emitted because no default
      summary writer was available.

    Raises:
      ValueError: if a default writer exists, but no step was provided and
        `tf.summary.experimental.get_step()` is None.
    """
    summary_metadata = metadata.create_summary_metadata(
        display_name=None, description=description
    )
    # TODO(https://github.com/tensorflow/tensorboard/issues/2109): remove fallback
    summary_scope = (
        getattr(tf.summary.experimental, "summary_scope", None)
        or tf.summary.summary_scope
    )
    with summary_scope(
        name, "image_summary", values=[data, max_outputs, step]
    ) as (tag, _):
        # Defer image encoding preprocessing by passing it as a callable to write(),
        # wrapped in a LazyTensorCreator for backwards compatibility, so that we
        # only do this work when summaries are actually written.
        @lazy_tensor_creator.LazyTensorCreator
        def lazy_tensor():
            tf.debugging.assert_rank(data, 4)
            tf.debugging.assert_non_negative(max_outputs)
            images = tf.image.convert_image_dtype(data, tf.uint8, saturate=True)
            limited_images = images[:max_outputs]
            encoded_images = tf.image.encode_png(limited_images)
            image_shape = tf.shape(input=images)
            dimensions = tf.stack(
                [
                    tf.as_string(image_shape[2], name="width"),
                    tf.as_string(image_shape[1], name="height"),
                ],
                name="dimensions",
            )
            return tf.concat([dimensions, encoded_images], axis=0)

        # To ensure that image encoding logic is only executed when summaries
        # are written, we pass callable to `tensor` parameter.
        return tf.summary.write(
            tag=tag, tensor=lazy_tensor, step=step, metadata=summary_metadata
        )