File size: 5,478 Bytes
cf2a15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The TensorBoard Histograms plugin.

See `http_api.md` in this directory for specifications of the routes for
this plugin.
"""


from werkzeug import wrappers

from tensorboard import errors
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.data import provider
from tensorboard.plugins import base_plugin
from tensorboard.plugins.histogram import metadata


_DEFAULT_DOWNSAMPLING = 500  # histograms per time series


class HistogramsPlugin(base_plugin.TBPlugin):
    """Histograms Plugin for TensorBoard.

    This supports both old-style summaries (created with TensorFlow ops
    that output directly to the `histo` field of the proto) and new-
    style summaries (as created by the
    `tensorboard.plugins.histogram.summary` module).
    """

    plugin_name = metadata.PLUGIN_NAME

    # Use a round number + 1 since sampling includes both start and end steps,
    # so N+1 samples corresponds to dividing the step sequence into N intervals.
    SAMPLE_SIZE = 51

    def __init__(self, context):
        """Instantiates HistogramsPlugin via TensorBoard core.

        Args:
          context: A base_plugin.TBContext instance.
        """
        self._downsample_to = (context.sampling_hints or {}).get(
            self.plugin_name, _DEFAULT_DOWNSAMPLING
        )
        self._data_provider = context.data_provider
        self._version_checker = plugin_util._MetadataVersionChecker(
            data_kind="histogram",
            latest_known_version=0,
        )

    def get_plugin_apps(self):
        return {
            "/histograms": self.histograms_route,
            "/tags": self.tags_route,
        }

    def is_active(self):
        return False  # `list_plugins` as called by TB core suffices

    def index_impl(self, ctx, experiment):
        """Return {runName: {tagName: {displayName: ..., description:
        ...}}}."""
        mapping = self._data_provider.list_tensors(
            ctx,
            experiment_id=experiment,
            plugin_name=metadata.PLUGIN_NAME,
        )
        result = {run: {} for run in mapping}
        for run, tag_to_content in mapping.items():
            for tag, metadatum in tag_to_content.items():
                description = plugin_util.markdown_to_safe_html(
                    metadatum.description
                )
                md = metadata.parse_plugin_metadata(metadatum.plugin_content)
                if not self._version_checker.ok(md.version, run, tag):
                    continue
                result[run][tag] = {
                    "displayName": metadatum.display_name,
                    "description": description,
                }
        return result

    def frontend_metadata(self):
        return base_plugin.FrontendMetadata(
            element_name="tf-histogram-dashboard"
        )

    def histograms_impl(self, ctx, tag, run, experiment, downsample_to=None):
        """Result of the form `(body, mime_type)`.

        At most `downsample_to` events will be returned. If this value is
        `None`, then default downsampling will be performed.

        Raises:
          tensorboard.errors.PublicError: On invalid request.
        """
        sample_count = (
            downsample_to if downsample_to is not None else self._downsample_to
        )
        all_histograms = self._data_provider.read_tensors(
            ctx,
            experiment_id=experiment,
            plugin_name=metadata.PLUGIN_NAME,
            downsample=sample_count,
            run_tag_filter=provider.RunTagFilter(runs=[run], tags=[tag]),
        )
        histograms = all_histograms.get(run, {}).get(tag, None)
        if histograms is None:
            raise errors.NotFoundError(
                "No histogram tag %r for run %r" % (tag, run)
            )
        events = [(e.wall_time, e.step, e.numpy.tolist()) for e in histograms]
        return (events, "application/json")

    @wrappers.Request.application
    def tags_route(self, request):
        ctx = plugin_util.context(request.environ)
        experiment = plugin_util.experiment_id(request.environ)
        index = self.index_impl(ctx, experiment=experiment)
        return http_util.Respond(request, index, "application/json")

    @wrappers.Request.application
    def histograms_route(self, request):
        """Given a tag and single run, return array of histogram values."""
        ctx = plugin_util.context(request.environ)
        experiment = plugin_util.experiment_id(request.environ)
        tag = request.args.get("tag")
        run = request.args.get("run")
        (body, mime_type) = self.histograms_impl(
            ctx, tag, run, experiment=experiment, downsample_to=self.SAMPLE_SIZE
        )
        return http_util.Respond(request, body, mime_type)