Spaces:
Sleeping
Sleeping
File size: 12,718 Bytes
cf2a15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The TensorBoard Graphs plugin."""
import json
from werkzeug import wrappers
from tensorboard import errors
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.backend import process_graph
from tensorboard.compat.proto import config_pb2
from tensorboard.compat.proto import graph_pb2
from tensorboard.data import provider
from tensorboard.plugins import base_plugin
from tensorboard.plugins.graph import graph_util
from tensorboard.plugins.graph import keras_util
from tensorboard.plugins.graph import metadata
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
class GraphsPlugin(base_plugin.TBPlugin):
"""Graphs Plugin for TensorBoard."""
plugin_name = metadata.PLUGIN_NAME
def __init__(self, context):
"""Instantiates GraphsPlugin via TensorBoard core.
Args:
context: A base_plugin.TBContext instance.
"""
self._data_provider = context.data_provider
def get_plugin_apps(self):
return {
"/graph": self.graph_route,
"/info": self.info_route,
"/run_metadata": self.run_metadata_route,
}
def is_active(self):
"""The graphs plugin is active iff any run has a graph or metadata."""
return False # `list_plugins` as called by TB core suffices
def data_plugin_names(self):
return (
metadata.PLUGIN_NAME,
metadata.PLUGIN_NAME_RUN_METADATA,
metadata.PLUGIN_NAME_RUN_METADATA_WITH_GRAPH,
metadata.PLUGIN_NAME_KERAS_MODEL,
metadata.PLUGIN_NAME_TAGGED_RUN_METADATA,
)
def frontend_metadata(self):
return base_plugin.FrontendMetadata(
element_name="tf-graph-dashboard",
# TODO(@chihuahua): Reconcile this setting with Health Pills.
disable_reload=True,
)
def info_impl(self, ctx, experiment=None):
"""Returns a dict of all runs and their data availabilities."""
result = {}
def add_row_item(run, tag=None):
run_item = result.setdefault(
run,
{
"run": run,
"tags": {},
# A run-wide GraphDef of ops.
"run_graph": False,
},
)
tag_item = None
if tag:
tag_item = run_item.get("tags").setdefault(
tag,
{
"tag": tag,
"conceptual_graph": False,
# A tagged GraphDef of ops.
"op_graph": False,
"profile": False,
},
)
return (run_item, tag_item)
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME_RUN_METADATA_WITH_GRAPH,
)
for run_name, tags in mapping.items():
for tag, tag_data in tags.items():
# The Summary op is defined in TensorFlow and does not use a stringified proto
# as a content of plugin data. It contains single string that denotes a version.
# https://github.com/tensorflow/tensorflow/blob/11f4ecb54708865ec757ca64e4805957b05d7570/tensorflow/python/ops/summary_ops_v2.py#L789-L790
if tag_data.plugin_content != b"1":
logger.warning(
"Ignoring unrecognizable version of RunMetadata."
)
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item["op_graph"] = True
# Tensors associated with plugin name metadata.PLUGIN_NAME_RUN_METADATA
# contain both op graph and profile information.
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME_RUN_METADATA,
)
for run_name, tags in mapping.items():
for tag, tag_data in tags.items():
if tag_data.plugin_content != b"1":
logger.warning(
"Ignoring unrecognizable version of RunMetadata."
)
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item["profile"] = True
tag_item["op_graph"] = True
# Tensors associated with plugin name metadata.PLUGIN_NAME_KERAS_MODEL
# contain serialized Keras model in JSON format.
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME_KERAS_MODEL,
)
for run_name, tags in mapping.items():
for tag, tag_data in tags.items():
if tag_data.plugin_content != b"1":
logger.warning(
"Ignoring unrecognizable version of RunMetadata."
)
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item["conceptual_graph"] = True
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME,
)
for run_name, tags in mapping.items():
if metadata.RUN_GRAPH_NAME in tags:
(run_item, _) = add_row_item(run_name, None)
run_item["run_graph"] = True
# Top level `Event.tagged_run_metadata` represents profile data only.
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME_TAGGED_RUN_METADATA,
)
for run_name, tags in mapping.items():
for tag in tags:
(_, tag_item) = add_row_item(run_name, tag)
tag_item["profile"] = True
return result
def _read_blob(self, ctx, experiment, plugin_names, run, tag):
for plugin_name in plugin_names:
blob_sequences = self._data_provider.read_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=plugin_name,
run_tag_filter=provider.RunTagFilter(runs=[run], tags=[tag]),
downsample=1,
)
blob_sequence_data = blob_sequences.get(run, {}).get(tag, ())
try:
blob_ref = blob_sequence_data[0].values[0]
except IndexError:
continue
return self._data_provider.read_blob(
ctx, blob_key=blob_ref.blob_key
)
raise errors.NotFoundError()
def graph_impl(
self,
ctx,
run,
tag,
is_conceptual,
experiment=None,
limit_attr_size=None,
large_attrs_key=None,
):
"""Result of the form `(body, mime_type)`; may raise `NotFound`."""
if is_conceptual:
keras_model_config = json.loads(
self._read_blob(
ctx,
experiment,
[metadata.PLUGIN_NAME_KERAS_MODEL],
run,
tag,
)
)
graph = keras_util.keras_model_to_graph_def(keras_model_config)
elif tag is None:
graph_raw = self._read_blob(
ctx,
experiment,
[metadata.PLUGIN_NAME],
run,
metadata.RUN_GRAPH_NAME,
)
graph = graph_pb2.GraphDef.FromString(graph_raw)
else:
# Op graph: could be either of two plugins. (Cf. `info_impl`.)
plugins = [
metadata.PLUGIN_NAME_RUN_METADATA,
metadata.PLUGIN_NAME_RUN_METADATA_WITH_GRAPH,
]
raw_run_metadata = self._read_blob(
ctx, experiment, plugins, run, tag
)
run_metadata = config_pb2.RunMetadata.FromString(raw_run_metadata)
graph = graph_util.merge_graph_defs(
[
func_graph.pre_optimization_graph
for func_graph in run_metadata.function_graphs
]
)
# This next line might raise a ValueError if the limit parameters
# are invalid (size is negative, size present but key absent, etc.).
process_graph.prepare_graph_for_ui(
graph, limit_attr_size, large_attrs_key
)
return (str(graph), "text/x-protobuf") # pbtxt
def run_metadata_impl(self, ctx, experiment, run, tag):
"""Result of the form `(body, mime_type)`; may raise `NotFound`."""
# Profile graph: could be either of two plugins. (Cf. `info_impl`.)
plugins = [
metadata.PLUGIN_NAME_TAGGED_RUN_METADATA,
metadata.PLUGIN_NAME_RUN_METADATA,
]
raw_run_metadata = self._read_blob(ctx, experiment, plugins, run, tag)
run_metadata = config_pb2.RunMetadata.FromString(raw_run_metadata)
return (str(run_metadata), "text/x-protobuf") # pbtxt
@wrappers.Request.application
def info_route(self, request):
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
info = self.info_impl(ctx, experiment)
return http_util.Respond(request, info, "application/json")
@wrappers.Request.application
def graph_route(self, request):
"""Given a single run, return the graph definition in protobuf
format."""
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
run = request.args.get("run")
tag = request.args.get("tag")
conceptual_arg = request.args.get("conceptual", False)
is_conceptual = True if conceptual_arg == "true" else False
if run is None:
return http_util.Respond(
request, 'query parameter "run" is required', "text/plain", 400
)
limit_attr_size = request.args.get("limit_attr_size", None)
if limit_attr_size is not None:
try:
limit_attr_size = int(limit_attr_size)
except ValueError:
return http_util.Respond(
request,
"query parameter `limit_attr_size` must be an integer",
"text/plain",
400,
)
large_attrs_key = request.args.get("large_attrs_key", None)
try:
result = self.graph_impl(
ctx,
run,
tag,
is_conceptual,
experiment,
limit_attr_size,
large_attrs_key,
)
except ValueError as e:
return http_util.Respond(request, e.message, "text/plain", code=400)
(body, mime_type) = result
return http_util.Respond(request, body, mime_type)
@wrappers.Request.application
def run_metadata_route(self, request):
"""Given a tag and a run, return the session.run() metadata."""
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
tag = request.args.get("tag")
run = request.args.get("run")
if tag is None:
return http_util.Respond(
request, 'query parameter "tag" is required', "text/plain", 400
)
if run is None:
return http_util.Respond(
request, 'query parameter "run" is required', "text/plain", 400
)
(body, mime_type) = self.run_metadata_impl(ctx, experiment, run, tag)
return http_util.Respond(request, body, mime_type)
|