Spaces:
Sleeping
Sleeping
File size: 8,730 Bytes
cf2a15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The TensorBoard Audio plugin."""
import urllib.parse
from werkzeug import wrappers
from tensorboard import errors
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.data import provider
from tensorboard.plugins import base_plugin
from tensorboard.plugins.audio import metadata
_DEFAULT_MIME_TYPE = "application/octet-stream"
_DEFAULT_DOWNSAMPLING = 10 # audio clips per time series
_MIME_TYPES = {
metadata.Encoding.Value("WAV"): "audio/wav",
}
_ALLOWED_MIME_TYPES = frozenset(
list(_MIME_TYPES.values()) + [_DEFAULT_MIME_TYPE]
)
class AudioPlugin(base_plugin.TBPlugin):
"""Audio Plugin for TensorBoard."""
plugin_name = metadata.PLUGIN_NAME
def __init__(self, context):
"""Instantiates AudioPlugin via TensorBoard core.
Args:
context: A base_plugin.TBContext instance.
"""
self._data_provider = context.data_provider
self._downsample_to = (context.sampling_hints or {}).get(
self.plugin_name, _DEFAULT_DOWNSAMPLING
)
self._version_checker = plugin_util._MetadataVersionChecker(
data_kind="audio",
latest_known_version=0,
)
def get_plugin_apps(self):
return {
"/audio": self._serve_audio_metadata,
"/individualAudio": self._serve_individual_audio,
"/tags": self._serve_tags,
}
def is_active(self):
return False # `list_plugins` as called by TB core suffices
def frontend_metadata(self):
return base_plugin.FrontendMetadata(element_name="tf-audio-dashboard")
def _index_impl(self, ctx, experiment):
"""Return information about the tags in each run.
Result is a dictionary of the form
{
"runName1": {
"tagName1": {
"displayName": "The first tag",
"description": "<p>Long ago there was just one tag...</p>",
"samples": 3
},
"tagName2": ...,
...
},
"runName2": ...,
...
}
For each tag, `samples` is the greatest number of audio clips that
appear at any particular step. (It's not related to "samples of a
waveform.") For example, if for tag `minibatch_input` there are
five audio clips at step 0 and ten audio clips at step 1, then the
dictionary for `"minibatch_input"` will contain `"samples": 10`.
"""
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME,
)
result = {run: {} for run in mapping}
for run, tag_to_time_series in mapping.items():
for tag, time_series in tag_to_time_series.items():
md = metadata.parse_plugin_metadata(time_series.plugin_content)
if not self._version_checker.ok(md.version, run, tag):
continue
description = plugin_util.markdown_to_safe_html(
time_series.description
)
result[run][tag] = {
"displayName": time_series.display_name,
"description": description,
"samples": time_series.max_length,
}
return result
@wrappers.Request.application
def _serve_audio_metadata(self, request):
"""Given a tag and list of runs, serve a list of metadata for audio.
Note that the actual audio data are not sent; instead, we respond
with URLs to the audio. The frontend should treat these URLs as
opaque and should not try to parse information about them or
generate them itself, as the format may change.
Args:
request: A werkzeug.wrappers.Request object.
Returns:
A werkzeug.Response application.
"""
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
tag = request.args.get("tag")
run = request.args.get("run")
sample = int(request.args.get("sample", 0))
response = self._audio_response_for_run(
ctx, experiment, run, tag, sample
)
return http_util.Respond(request, response, "application/json")
def _audio_response_for_run(self, ctx, experiment, run, tag, sample):
"""Builds a JSON-serializable object with information about audio.
Args:
run: The name of the run.
tag: The name of the tag the audio entries all belong to.
sample: The zero-indexed sample of the audio sample for which to
retrieve information. For instance, setting `sample` to `2` will
fetch information about only the third audio clip of each batch,
and steps with fewer than three audio clips will be omitted from
the results.
Returns:
A list of dictionaries containing the wall time, step, label,
content type, and query string for each audio entry.
"""
all_audio = self._data_provider.read_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME,
downsample=self._downsample_to,
run_tag_filter=provider.RunTagFilter(runs=[run], tags=[tag]),
)
audio = all_audio.get(run, {}).get(tag, None)
if audio is None:
raise errors.NotFoundError(
"No audio data for run=%r, tag=%r" % (run, tag)
)
content_type = self._get_mime_type(ctx, experiment, run, tag)
response = []
for datum in audio:
if len(datum.values) < sample:
continue
query = urllib.parse.urlencode(
{
"blob_key": datum.values[sample].blob_key,
"content_type": content_type,
}
)
response.append(
{
"wall_time": datum.wall_time,
"label": "",
"step": datum.step,
"contentType": content_type,
"query": query,
}
)
return response
def _get_mime_type(self, ctx, experiment, run, tag):
# TODO(@wchargin): Move this call from `/audio` (called many
# times) to `/tags` (called few times) to reduce data provider
# calls.
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME,
)
time_series = mapping.get(run, {}).get(tag, None)
if time_series is None:
raise errors.NotFoundError(
"No audio data for run=%r, tag=%r" % (run, tag)
)
parsed = metadata.parse_plugin_metadata(time_series.plugin_content)
return _MIME_TYPES.get(parsed.encoding, _DEFAULT_MIME_TYPE)
@wrappers.Request.application
def _serve_individual_audio(self, request):
"""Serve encoded audio data."""
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
mime_type = request.args["content_type"]
if mime_type not in _ALLOWED_MIME_TYPES:
raise errors.InvalidArgumentError(
"Illegal mime type %r" % mime_type
)
blob_key = request.args["blob_key"]
data = self._data_provider.read_blob(ctx, blob_key=blob_key)
return http_util.Respond(request, data, mime_type)
@wrappers.Request.application
def _serve_tags(self, request):
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
index = self._index_impl(ctx, experiment)
return http_util.Respond(request, index, "application/json")
|