Spaces:
Sleeping
Sleeping
File size: 8,610 Bytes
cf2a15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to migrate legacy summaries/events to generic data form.
For legacy summaries, this populates the `SummaryMetadata.data_class`
field and makes any necessary transformations to the tensor value. For
`graph_def` events, this creates a new summary event.
This should be effected after the `data_compat` transformation.
"""
from tensorboard.compat.proto import event_pb2
from tensorboard.compat.proto import summary_pb2
from tensorboard.plugins.audio import metadata as audio_metadata
from tensorboard.plugins.custom_scalar import (
metadata as custom_scalars_metadata,
)
from tensorboard.plugins.graph import metadata as graphs_metadata
from tensorboard.plugins.histogram import metadata as histograms_metadata
from tensorboard.plugins.hparams import metadata as hparams_metadata
from tensorboard.plugins.image import metadata as images_metadata
from tensorboard.plugins.mesh import metadata as mesh_metadata
from tensorboard.plugins.pr_curve import metadata as pr_curves_metadata
from tensorboard.plugins.scalar import metadata as scalars_metadata
from tensorboard.plugins.text import metadata as text_metadata
from tensorboard.util import tensor_util
def migrate_event(event, initial_metadata):
"""Migrate an event to a sequence of events.
Args:
event: An `event_pb2.Event`. The caller transfers ownership of the
event to this method; the event may be mutated, and may or may
not appear in the returned sequence.
initial_metadata: Map from tag name (string) to `SummaryMetadata`
proto for the initial occurrence of the given tag within the
enclosing run. While loading a given run, the caller should
always pass the same dictionary here, initially `{}`; this
function will mutate it and reuse it for future calls.
Returns:
A sequence of `event_pb2.Event`s to use instead of `event`.
"""
what = event.WhichOneof("what")
if what == "graph_def":
return _migrate_graph_event(event)
if what == "tagged_run_metadata":
return _migrate_tagged_run_metadata_event(event)
if what == "summary":
return _migrate_summary_event(event, initial_metadata)
return (event,)
def _migrate_graph_event(old_event):
result = event_pb2.Event()
result.wall_time = old_event.wall_time
result.step = old_event.step
value = result.summary.value.add(tag=graphs_metadata.RUN_GRAPH_NAME)
graph_bytes = old_event.graph_def
value.tensor.CopyFrom(tensor_util.make_tensor_proto([graph_bytes]))
value.metadata.plugin_data.plugin_name = graphs_metadata.PLUGIN_NAME
# `value.metadata.plugin_data.content` left empty
value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
# As long as the graphs plugin still reads the old format, keep both
# the old event and the new event to maintain compatibility.
return (old_event, result)
def _migrate_tagged_run_metadata_event(old_event):
result = event_pb2.Event()
result.wall_time = old_event.wall_time
result.step = old_event.step
trm = old_event.tagged_run_metadata
value = result.summary.value.add(tag=trm.tag)
value.tensor.CopyFrom(tensor_util.make_tensor_proto([trm.run_metadata]))
value.metadata.plugin_data.plugin_name = (
graphs_metadata.PLUGIN_NAME_TAGGED_RUN_METADATA
)
# `value.metadata.plugin_data.content` left empty
value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
return (result,)
def _migrate_summary_event(event, initial_metadata):
values = event.summary.value
new_values = [
new for old in values for new in _migrate_value(old, initial_metadata)
]
# Optimization: Don't create a new event if there were no shallow
# changes (there may still have been in-place changes).
if len(values) == len(new_values) and all(
x is y for (x, y) in zip(values, new_values)
):
return (event,)
del event.summary.value[:]
event.summary.value.extend(new_values)
return (event,)
def _migrate_value(value, initial_metadata):
"""Convert an old value to a stream of new values. May mutate."""
metadata = initial_metadata.get(value.tag)
initial = False
if metadata is None:
initial = True
# Retain a copy of the initial metadata, so that even after we
# update its data class we know whether to also transform later
# events in this time series.
metadata = summary_pb2.SummaryMetadata()
metadata.CopyFrom(value.metadata)
initial_metadata[value.tag] = metadata
if metadata.data_class != summary_pb2.DATA_CLASS_UNKNOWN:
return (value,)
plugin_name = metadata.plugin_data.plugin_name
if plugin_name == histograms_metadata.PLUGIN_NAME:
return _migrate_histogram_value(value)
if plugin_name == images_metadata.PLUGIN_NAME:
return _migrate_image_value(value)
if plugin_name == audio_metadata.PLUGIN_NAME:
return _migrate_audio_value(value)
if plugin_name == scalars_metadata.PLUGIN_NAME:
return _migrate_scalar_value(value)
if plugin_name == text_metadata.PLUGIN_NAME:
return _migrate_text_value(value)
if plugin_name == hparams_metadata.PLUGIN_NAME:
return _migrate_hparams_value(value)
if plugin_name == pr_curves_metadata.PLUGIN_NAME:
return _migrate_pr_curve_value(value)
if plugin_name == mesh_metadata.PLUGIN_NAME:
return _migrate_mesh_value(value)
if plugin_name == custom_scalars_metadata.PLUGIN_NAME:
return _migrate_custom_scalars_value(value)
if plugin_name in [
graphs_metadata.PLUGIN_NAME_RUN_METADATA,
graphs_metadata.PLUGIN_NAME_RUN_METADATA_WITH_GRAPH,
graphs_metadata.PLUGIN_NAME_KERAS_MODEL,
]:
return _migrate_graph_sub_plugin_value(value)
return (value,)
def _migrate_scalar_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_SCALAR
return (value,)
def _migrate_histogram_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
return (value,)
def _migrate_image_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
return (value,)
def _migrate_text_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
return (value,)
def _migrate_audio_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
tensor = value.tensor
# Project out just the first axis: actual audio clips.
stride = 1
while len(tensor.tensor_shape.dim) > 1:
stride *= tensor.tensor_shape.dim.pop().size
if stride != 1:
tensor.string_val[:] = tensor.string_val[::stride]
return (value,)
def _migrate_hparams_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
if not value.HasField("tensor"):
value.tensor.CopyFrom(hparams_metadata.NULL_TENSOR)
return (value,)
def _migrate_pr_curve_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
return (value,)
def _migrate_mesh_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
return (value,)
def _migrate_custom_scalars_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
return (value,)
def _migrate_graph_sub_plugin_value(value):
if value.HasField("metadata"):
value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
shape = value.tensor.tensor_shape.dim
if not shape:
shape.add(size=1)
return (value,)
|