File size: 8,610 Bytes
cf2a15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to migrate legacy summaries/events to generic data form.

For legacy summaries, this populates the `SummaryMetadata.data_class`
field and makes any necessary transformations to the tensor value. For
`graph_def` events, this creates a new summary event.

This should be effected after the `data_compat` transformation.
"""


from tensorboard.compat.proto import event_pb2
from tensorboard.compat.proto import summary_pb2
from tensorboard.plugins.audio import metadata as audio_metadata
from tensorboard.plugins.custom_scalar import (
    metadata as custom_scalars_metadata,
)
from tensorboard.plugins.graph import metadata as graphs_metadata
from tensorboard.plugins.histogram import metadata as histograms_metadata
from tensorboard.plugins.hparams import metadata as hparams_metadata
from tensorboard.plugins.image import metadata as images_metadata
from tensorboard.plugins.mesh import metadata as mesh_metadata
from tensorboard.plugins.pr_curve import metadata as pr_curves_metadata
from tensorboard.plugins.scalar import metadata as scalars_metadata
from tensorboard.plugins.text import metadata as text_metadata
from tensorboard.util import tensor_util


def migrate_event(event, initial_metadata):
    """Migrate an event to a sequence of events.

    Args:
      event: An `event_pb2.Event`. The caller transfers ownership of the
        event to this method; the event may be mutated, and may or may
        not appear in the returned sequence.
      initial_metadata: Map from tag name (string) to `SummaryMetadata`
        proto for the initial occurrence of the given tag within the
        enclosing run. While loading a given run, the caller should
        always pass the same dictionary here, initially `{}`; this
        function will mutate it and reuse it for future calls.

    Returns:
      A sequence of `event_pb2.Event`s to use instead of `event`.
    """
    what = event.WhichOneof("what")
    if what == "graph_def":
        return _migrate_graph_event(event)
    if what == "tagged_run_metadata":
        return _migrate_tagged_run_metadata_event(event)
    if what == "summary":
        return _migrate_summary_event(event, initial_metadata)
    return (event,)


def _migrate_graph_event(old_event):
    result = event_pb2.Event()
    result.wall_time = old_event.wall_time
    result.step = old_event.step
    value = result.summary.value.add(tag=graphs_metadata.RUN_GRAPH_NAME)
    graph_bytes = old_event.graph_def
    value.tensor.CopyFrom(tensor_util.make_tensor_proto([graph_bytes]))
    value.metadata.plugin_data.plugin_name = graphs_metadata.PLUGIN_NAME
    # `value.metadata.plugin_data.content` left empty
    value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
    # As long as the graphs plugin still reads the old format, keep both
    # the old event and the new event to maintain compatibility.
    return (old_event, result)


def _migrate_tagged_run_metadata_event(old_event):
    result = event_pb2.Event()
    result.wall_time = old_event.wall_time
    result.step = old_event.step
    trm = old_event.tagged_run_metadata
    value = result.summary.value.add(tag=trm.tag)
    value.tensor.CopyFrom(tensor_util.make_tensor_proto([trm.run_metadata]))
    value.metadata.plugin_data.plugin_name = (
        graphs_metadata.PLUGIN_NAME_TAGGED_RUN_METADATA
    )
    # `value.metadata.plugin_data.content` left empty
    value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
    return (result,)


def _migrate_summary_event(event, initial_metadata):
    values = event.summary.value
    new_values = [
        new for old in values for new in _migrate_value(old, initial_metadata)
    ]
    # Optimization: Don't create a new event if there were no shallow
    # changes (there may still have been in-place changes).
    if len(values) == len(new_values) and all(
        x is y for (x, y) in zip(values, new_values)
    ):
        return (event,)
    del event.summary.value[:]
    event.summary.value.extend(new_values)
    return (event,)


def _migrate_value(value, initial_metadata):
    """Convert an old value to a stream of new values. May mutate."""
    metadata = initial_metadata.get(value.tag)
    initial = False
    if metadata is None:
        initial = True
        # Retain a copy of the initial metadata, so that even after we
        # update its data class we know whether to also transform later
        # events in this time series.
        metadata = summary_pb2.SummaryMetadata()
        metadata.CopyFrom(value.metadata)
        initial_metadata[value.tag] = metadata
    if metadata.data_class != summary_pb2.DATA_CLASS_UNKNOWN:
        return (value,)
    plugin_name = metadata.plugin_data.plugin_name
    if plugin_name == histograms_metadata.PLUGIN_NAME:
        return _migrate_histogram_value(value)
    if plugin_name == images_metadata.PLUGIN_NAME:
        return _migrate_image_value(value)
    if plugin_name == audio_metadata.PLUGIN_NAME:
        return _migrate_audio_value(value)
    if plugin_name == scalars_metadata.PLUGIN_NAME:
        return _migrate_scalar_value(value)
    if plugin_name == text_metadata.PLUGIN_NAME:
        return _migrate_text_value(value)
    if plugin_name == hparams_metadata.PLUGIN_NAME:
        return _migrate_hparams_value(value)
    if plugin_name == pr_curves_metadata.PLUGIN_NAME:
        return _migrate_pr_curve_value(value)
    if plugin_name == mesh_metadata.PLUGIN_NAME:
        return _migrate_mesh_value(value)
    if plugin_name == custom_scalars_metadata.PLUGIN_NAME:
        return _migrate_custom_scalars_value(value)
    if plugin_name in [
        graphs_metadata.PLUGIN_NAME_RUN_METADATA,
        graphs_metadata.PLUGIN_NAME_RUN_METADATA_WITH_GRAPH,
        graphs_metadata.PLUGIN_NAME_KERAS_MODEL,
    ]:
        return _migrate_graph_sub_plugin_value(value)
    return (value,)


def _migrate_scalar_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_SCALAR
    return (value,)


def _migrate_histogram_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
    return (value,)


def _migrate_image_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
    return (value,)


def _migrate_text_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
    return (value,)


def _migrate_audio_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
    tensor = value.tensor
    # Project out just the first axis: actual audio clips.
    stride = 1
    while len(tensor.tensor_shape.dim) > 1:
        stride *= tensor.tensor_shape.dim.pop().size
    if stride != 1:
        tensor.string_val[:] = tensor.string_val[::stride]
    return (value,)


def _migrate_hparams_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
    if not value.HasField("tensor"):
        value.tensor.CopyFrom(hparams_metadata.NULL_TENSOR)
    return (value,)


def _migrate_pr_curve_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
    return (value,)


def _migrate_mesh_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
    return (value,)


def _migrate_custom_scalars_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_TENSOR
    return (value,)


def _migrate_graph_sub_plugin_value(value):
    if value.HasField("metadata"):
        value.metadata.data_class = summary_pb2.DATA_CLASS_BLOB_SEQUENCE
    shape = value.tensor.tensor_shape.dim
    if not shape:
        shape.add(size=1)
    return (value,)