File size: 12,262 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import functools, itertools
from sympy.core.sympify import _sympify, sympify
from sympy.core.expr import Expr
from sympy.core import Basic, Tuple
from sympy.tensor.array import ImmutableDenseNDimArray
from sympy.core.symbol import Symbol
from sympy.core.numbers import Integer


class ArrayComprehension(Basic):
    """
    Generate a list comprehension.

    Explanation
    ===========

    If there is a symbolic dimension, for example, say [i for i in range(1, N)] where
    N is a Symbol, then the expression will not be expanded to an array. Otherwise,
    calling the doit() function will launch the expansion.

    Examples
    ========

    >>> from sympy.tensor.array import ArrayComprehension
    >>> from sympy import symbols
    >>> i, j, k = symbols('i j k')
    >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
    >>> a
    ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
    >>> a.doit()
    [[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]
    >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k))
    >>> b.doit()
    ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k))
    """
    def __new__(cls, function, *symbols, **assumptions):
        if any(len(l) != 3 or None for l in symbols):
            raise ValueError('ArrayComprehension requires values lower and upper bound'
                              ' for the expression')
        arglist = [sympify(function)]
        arglist.extend(cls._check_limits_validity(function, symbols))
        obj = Basic.__new__(cls, *arglist, **assumptions)
        obj._limits = obj._args[1:]
        obj._shape = cls._calculate_shape_from_limits(obj._limits)
        obj._rank = len(obj._shape)
        obj._loop_size = cls._calculate_loop_size(obj._shape)
        return obj

    @property
    def function(self):
        """The function applied across limits.

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j = symbols('i j')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.function
        10*i + j
        """
        return self._args[0]

    @property
    def limits(self):
        """
        The list of limits that will be applied while expanding the array.

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j = symbols('i j')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.limits
        ((i, 1, 4), (j, 1, 3))
        """
        return self._limits

    @property
    def free_symbols(self):
        """
        The set of the free_symbols in the array.
        Variables appeared in the bounds are supposed to be excluded
        from the free symbol set.

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j, k = symbols('i j k')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.free_symbols
        set()
        >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
        >>> b.free_symbols
        {k}
        """
        expr_free_sym = self.function.free_symbols
        for var, inf, sup in self._limits:
            expr_free_sym.discard(var)
            curr_free_syms = inf.free_symbols.union(sup.free_symbols)
            expr_free_sym = expr_free_sym.union(curr_free_syms)
        return expr_free_sym

    @property
    def variables(self):
        """The tuples of the variables in the limits.

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j, k = symbols('i j k')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.variables
        [i, j]
        """
        return [l[0] for l in self._limits]

    @property
    def bound_symbols(self):
        """The list of dummy variables.

        Note
        ====

        Note that all variables are dummy variables since a limit without
        lower bound or upper bound is not accepted.
        """
        return [l[0] for l in self._limits if len(l) != 1]

    @property
    def shape(self):
        """
        The shape of the expanded array, which may have symbols.

        Note
        ====

        Both the lower and the upper bounds are included while
        calculating the shape.

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j, k = symbols('i j k')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.shape
        (4, 3)
        >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
        >>> b.shape
        (4, k + 3)
        """
        return self._shape

    @property
    def is_shape_numeric(self):
        """
        Test if the array is shape-numeric which means there is no symbolic
        dimension.

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j, k = symbols('i j k')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.is_shape_numeric
        True
        >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
        >>> b.is_shape_numeric
        False
        """
        for _, inf, sup in self._limits:
            if Basic(inf, sup).atoms(Symbol):
                return False
        return True

    def rank(self):
        """The rank of the expanded array.

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j, k = symbols('i j k')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.rank()
        2
        """
        return self._rank

    def __len__(self):
        """
        The length of the expanded array which means the number
        of elements in the array.

        Raises
        ======

        ValueError : When the length of the array is symbolic

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j = symbols('i j')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> len(a)
        12
        """
        if self._loop_size.free_symbols:
            raise ValueError('Symbolic length is not supported')
        return self._loop_size

    @classmethod
    def _check_limits_validity(cls, function, limits):
        #limits = sympify(limits)
        new_limits = []
        for var, inf, sup in limits:
            var = _sympify(var)
            inf = _sympify(inf)
            #since this is stored as an argument, it should be
            #a Tuple
            if isinstance(sup, list):
                sup = Tuple(*sup)
            else:
                sup = _sympify(sup)
            new_limits.append(Tuple(var, inf, sup))
            if any((not isinstance(i, Expr)) or i.atoms(Symbol, Integer) != i.atoms()
                                                                for i in [inf, sup]):
                raise TypeError('Bounds should be an Expression(combination of Integer and Symbol)')
            if (inf > sup) == True:
                raise ValueError('Lower bound should be inferior to upper bound')
            if var in inf.free_symbols or var in sup.free_symbols:
                raise ValueError('Variable should not be part of its bounds')
        return new_limits

    @classmethod
    def _calculate_shape_from_limits(cls, limits):
        return tuple([sup - inf + 1 for _, inf, sup in limits])

    @classmethod
    def _calculate_loop_size(cls, shape):
        if not shape:
            return 0
        loop_size = 1
        for l in shape:
            loop_size = loop_size * l

        return loop_size

    def doit(self, **hints):
        if not self.is_shape_numeric:
            return self

        return self._expand_array()

    def _expand_array(self):
        res = []
        for values in itertools.product(*[range(inf, sup+1)
                                        for var, inf, sup
                                        in self._limits]):
            res.append(self._get_element(values))

        return ImmutableDenseNDimArray(res, self.shape)

    def _get_element(self, values):
        temp = self.function
        for var, val in zip(self.variables, values):
            temp = temp.subs(var, val)
        return temp

    def tolist(self):
        """Transform the expanded array to a list.

        Raises
        ======

        ValueError : When there is a symbolic dimension

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j = symbols('i j')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.tolist()
        [[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]
        """
        if self.is_shape_numeric:
            return self._expand_array().tolist()

        raise ValueError("A symbolic array cannot be expanded to a list")

    def tomatrix(self):
        """Transform the expanded array to a matrix.

        Raises
        ======

        ValueError : When there is a symbolic dimension
        ValueError : When the rank of the expanded array is not equal to 2

        Examples
        ========

        >>> from sympy.tensor.array import ArrayComprehension
        >>> from sympy import symbols
        >>> i, j = symbols('i j')
        >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
        >>> a.tomatrix()
        Matrix([
        [11, 12, 13],
        [21, 22, 23],
        [31, 32, 33],
        [41, 42, 43]])
        """
        from sympy.matrices import Matrix

        if not self.is_shape_numeric:
            raise ValueError("A symbolic array cannot be expanded to a matrix")
        if self._rank != 2:
            raise ValueError('Dimensions must be of size of 2')

        return Matrix(self._expand_array().tomatrix())


def isLambda(v):
    LAMBDA = lambda: 0
    return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__

class ArrayComprehensionMap(ArrayComprehension):
    '''
    A subclass of ArrayComprehension dedicated to map external function lambda.

    Notes
    =====

    Only the lambda function is considered.
    At most one argument in lambda function is accepted in order to avoid ambiguity
    in value assignment.

    Examples
    ========

    >>> from sympy.tensor.array import ArrayComprehensionMap
    >>> from sympy import symbols
    >>> i, j, k = symbols('i j k')
    >>> a = ArrayComprehensionMap(lambda: 1, (i, 1, 4))
    >>> a.doit()
    [1, 1, 1, 1]
    >>> b = ArrayComprehensionMap(lambda a: a+1, (j, 1, 4))
    >>> b.doit()
    [2, 3, 4, 5]

    '''
    def __new__(cls, function, *symbols, **assumptions):
        if any(len(l) != 3 or None for l in symbols):
            raise ValueError('ArrayComprehension requires values lower and upper bound'
                              ' for the expression')

        if not isLambda(function):
            raise ValueError('Data type not supported')

        arglist = cls._check_limits_validity(function, symbols)
        obj = Basic.__new__(cls, *arglist, **assumptions)
        obj._limits = obj._args
        obj._shape = cls._calculate_shape_from_limits(obj._limits)
        obj._rank = len(obj._shape)
        obj._loop_size = cls._calculate_loop_size(obj._shape)
        obj._lambda = function
        return obj

    @property
    def func(self):
        class _(ArrayComprehensionMap):
            def __new__(cls, *args, **kwargs):
                return ArrayComprehensionMap(self._lambda, *args, **kwargs)
        return _

    def _get_element(self, values):
        temp = self._lambda
        if self._lambda.__code__.co_argcount == 0:
            temp = temp()
        elif self._lambda.__code__.co_argcount == 1:
            temp = temp(functools.reduce(lambda a, b: a*b, values))
        return temp