File size: 39,335 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
from sympy.concrete.summations import Sum
from sympy.core.containers import Tuple
from sympy.core.function import Lambda
from sympy.core.numbers import (Float, Rational, oo, pi)
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.error_functions import erf
from sympy.functions.special.gamma_functions import (gamma, lowergamma)
from sympy.logic.boolalg import (And, Not)
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.immutable import ImmutableMatrix
from sympy.sets.contains import Contains
from sympy.sets.fancysets import Range
from sympy.sets.sets import (FiniteSet, Interval)
from sympy.stats import (DiscreteMarkovChain, P, TransitionMatrixOf, E,
                         StochasticStateSpaceOf, variance, ContinuousMarkovChain,
                         BernoulliProcess, PoissonProcess, WienerProcess,
                         GammaProcess, sample_stochastic_process)
from sympy.stats.joint_rv import JointDistribution
from sympy.stats.joint_rv_types import JointDistributionHandmade
from sympy.stats.rv import RandomIndexedSymbol
from sympy.stats.symbolic_probability import Probability, Expectation
from sympy.testing.pytest import (raises, skip, ignore_warnings,
                                  warns_deprecated_sympy)
from sympy.external import import_module
from sympy.stats.frv_types import BernoulliDistribution
from sympy.stats.drv_types import PoissonDistribution
from sympy.stats.crv_types import NormalDistribution, GammaDistribution
from sympy.core.symbol import Str


def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert isinstance(X.state_space, Range)
    assert X.index_set == S.Naturals0
    assert isinstance(X.transition_probabilities, MatrixSymbol)
    t = symbols('t', positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))
    raises(NotImplementedError, lambda: X.communication_classes())
    raises(NotImplementedError, lambda: X.canonical_form())
    raises(NotImplementedError, lambda: X.decompose())

    nz = Symbol('n', integer=True)
    TZ = MatrixSymbol('M', nz, nz)
    SZ = Range(nz)
    YZ = DiscreteMarkovChain('Y', SZ, TZ)
    assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1]

    raises(ValueError, lambda: sample_stochastic_process(t))
    raises(ValueError, lambda: next(sample_stochastic_process(X)))
    # pass name and state_space
    # any hashable object should be a valid state
    # states should be valid as a tuple/set/list/Tuple/Range
    sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True)
    state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain("Y", (1,2,3))],
                    Tuple(S(1), exp(sym), Str('World'), sympify=False), Range(-1, 5, 2),
                    [rainy, cloudy, sunny]]
    chains = [DiscreteMarkovChain("Y", state_space) for state_space in state_spaces]

    for i, Y in enumerate(chains):
        assert isinstance(Y.transition_probabilities, MatrixSymbol)
        assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(*state_spaces[i])
        assert Y.number_of_states == 3

        with ignore_warnings(UserWarning):  # TODO: Restore tests once warnings are removed
            assert P(Eq(Y[2], 1), Eq(Y[0], 2), evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
        assert E(Y[0]) == Expectation(Y[0])

        raises(ValueError, lambda: next(sample_stochastic_process(Y)))

    raises(TypeError, lambda: DiscreteMarkovChain("Y", {1: 1}))
    Y = DiscreteMarkovChain("Y", Range(1, t, 2))
    assert Y.number_of_states == ceiling((t-1)/2)

    # pass name and transition_probabilities
    chains = [DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
              DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
              DiscreteMarkovChain("Y", trans_probs=Matrix([[pi, 1-pi], [sym, 1-sym]]))]
    for Z in chains:
        assert Z.number_of_states == Z.transition_probabilities.shape[0]
        assert isinstance(Z.transition_probabilities, ImmutableMatrix)

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
    TS = MatrixSymbol('T', 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
    assert Y.joint_distribution(1, Y[2], 3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
            (TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2])).simplify() == 0
    assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
    assert P(Eq(YS[3], 3), Eq(YS[1], 1)) == TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2]
    TO = Matrix([[0.25, 0.75, 0],[0, 0.25, 0.75],[0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2), Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(0.375, 3)
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert E(Y[3], evaluate=False) == Expectation(Y[3])
        assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol('T', 4, 4)
    raises(ValueError, lambda: str(P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
    raises(TypeError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
    raises(ValueError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))


    # extended tests for probability queries
    TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
            Eq(Probability(Eq(Y[0], 0)), Rational(1, 4)) & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
            Probability(Eq(Y[0], 0))/4
    assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) &
        StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) &
             StochasticStateSpaceOf(X, [S(0), '0', 1]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) &
        StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) &
             StochasticStateSpaceOf(X, [S(0), '0', 1]) & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Y[1], 1)) == 0.1*Probability(Eq(Y[0], 0))

    # testing properties of Markov chain
    TO2 = Matrix([[S.One, 0, 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
    TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)], [0, Rational(1, 4), Rational(3, 4)]])
    Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
    Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
    assert Y3.fundamental_matrix() == ImmutableMatrix([[176, 81, -132], [36, 141, -52], [-44, -39, 208]])/125
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    assert Y2.canonical_form() == ([0, 1, 2], TO2)
    assert Y3.canonical_form() == ([0, 1, 2], TO3)
    assert Y2.decompose() == ([0, 1, 2], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])
    assert Y3.decompose() == ([0, 1, 2], TO3, Matrix(0, 3, []), Matrix(0, 0, []))
    TO4 = Matrix([[Rational(1, 5), Rational(2, 5), Rational(2, 5)], [Rational(1, 10), S.Half, Rational(2, 5)], [Rational(3, 5), Rational(3, 10), Rational(1, 10)]])
    Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
    w = ImmutableMatrix([[Rational(11, 39), Rational(16, 39), Rational(4, 13)]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    assert Y4.is_ergodic() == True
    TS1 = MatrixSymbol('T', 3, 3)
    Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    assert Y5.stationary_distribution(condition_set=True).subs(TS1, TO4).contains(w).doit() == S.true
    TO6 = Matrix([[S.One, 0, 0, 0, 0],[S.Half, 0, S.Half, 0, 0],[0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half], [0, 0, 0, 0, 1]])
    Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
    assert Y6.fundamental_matrix() == ImmutableMatrix([[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One], [S.Half, S.One, Rational(3, 2)]])
    assert Y6.absorbing_probabilities() == ImmutableMatrix([[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half], [Rational(1, 4), Rational(3, 4)]])
    with warns_deprecated_sympy():
        Y6.absorbing_probabilites()
    TO7 = Matrix([[Rational(1, 2), Rational(1, 4), Rational(1, 4)], [Rational(1, 2), 0, Rational(1, 2)], [Rational(1, 4), Rational(1, 4), Rational(1, 2)]])
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    assert Y7.is_absorbing_chain() == False
    assert Y7.fundamental_matrix() == ImmutableMatrix([[Rational(86, 75), Rational(1, 25), Rational(-14, 75)],
                                                            [Rational(2, 25), Rational(21, 25), Rational(2, 25)],
                                                            [Rational(-14, 75), Rational(1, 25), Rational(86, 75)]])

    # test for zero-sized matrix functionality
    X = DiscreteMarkovChain('X', trans_probs=Matrix([[]]))
    assert X.number_of_states == 0
    assert X.stationary_distribution() == Matrix([[]])
    assert X.communication_classes() == []
    assert X.canonical_form() == ([], Matrix([[]]))
    assert X.decompose() == ([], Matrix([[]]), Matrix([[]]), Matrix([[]]))
    assert X.is_regular() == False
    assert X.is_ergodic() == False

    # test communication_class
    # see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing
    # tutorial 2.pdf
    TO7 = Matrix([[0, 5, 5, 0, 0],
                  [0, 0, 0, 10, 0],
                  [5, 0, 5, 0, 0],
                  [0, 10, 0, 0, 0],
                  [0, 3, 0, 3, 4]])/10
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    tuples = Y7.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1, 3], [0, 2], [4])
    assert recurrence == (True, False, False)
    assert periods == (2, 1, 1)

    TO8 = Matrix([[0, 0, 0, 10, 0, 0],
                  [5, 0, 5, 0, 0, 0],
                  [0, 4, 0, 0, 0, 6],
                  [10, 0, 0, 0, 0, 0],
                  [0, 10, 0, 0, 0, 0],
                  [0, 0, 0, 5, 5, 0]])/10
    Y8 = DiscreteMarkovChain('Y', trans_probs=TO8)
    tuples = Y8.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3], [1, 2, 5, 4])
    assert recurrence == (True, False)
    assert periods == (2, 2)

    TO9 = Matrix([[2, 0, 0, 3, 0, 0, 3, 2, 0, 0],
                  [0, 10, 0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 2, 2, 0, 0, 0, 0, 0, 3, 3],
                  [0, 0, 0, 3, 0, 0, 6, 1, 0, 0],
                  [0, 0, 0, 0, 5, 5, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 10, 0, 0, 0, 0],
                  [4, 0, 0, 5, 0, 0, 1, 0, 0, 0],
                  [2, 0, 0, 4, 0, 0, 2, 2, 0, 0],
                  [3, 0, 1, 0, 0, 0, 0, 0, 4, 2],
                  [0, 0, 4, 0, 0, 0, 0, 0, 3, 3]])/10
    Y9 = DiscreteMarkovChain('Y', trans_probs=TO9)
    tuples = Y9.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4])
    assert recurrence == (True, True, False, True, False)
    assert periods == (1, 1, 1, 1, 1)

    # test canonical form
    # see https://web.archive.org/web/20201230182007/https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
    # example 11.13
    T = Matrix([[1, 0, 0, 0, 0],
                [S(1) / 2, 0, S(1) / 2, 0, 0],
                [0, S(1) / 2, 0, S(1) / 2, 0],
                [0, 0, S(1) / 2, 0, S(1) / 2],
                [0, 0, 0, 0, S(1)]])
    DW = DiscreteMarkovChain('DW', [0, 1, 2, 3, 4], T)
    states, A, B, C = DW.decompose()
    assert states == [0, 4, 1, 2, 3]
    assert A == Matrix([[1, 0], [0, 1]])
    assert B == Matrix([[S(1)/2, 0], [0, 0], [0, S(1)/2]])
    assert C == Matrix([[0, S(1)/2, 0], [S(1)/2, 0, S(1)/2], [0, S(1)/2, 0]])
    states, new_matrix = DW.canonical_form()
    assert states == [0, 4, 1, 2, 3]
    assert new_matrix == Matrix([[1, 0, 0, 0, 0],
                                 [0, 1, 0, 0, 0],
                                 [S(1)/2, 0, 0, S(1)/2, 0],
                                 [0, 0, S(1)/2, 0, S(1)/2],
                                 [0, S(1)/2, 0, S(1)/2, 0]])

    # test regular and ergodic
    # https://web.archive.org/web/20201230182007/https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
    T = Matrix([[0, 4, 0, 0, 0],
                [1, 0, 3, 0, 0],
                [0, 2, 0, 2, 0],
                [0, 0, 3, 0, 1],
                [0, 0, 0, 4, 0]])/4
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_regular()
    assert X.is_ergodic()
    T = Matrix([[0, 1], [1, 0]])
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_regular()
    assert X.is_ergodic()
    # http://www.math.wisc.edu/~valko/courses/331/MC2.pdf
    T = Matrix([[2, 1, 1],
                [2, 0, 2],
                [1, 1, 2]])/4
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_regular()
    assert X.is_ergodic()
    # https://docs.ufpr.br/~lucambio/CE222/1S2014/Kemeny-Snell1976.pdf
    T = Matrix([[1, 1], [1, 1]])/2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_regular()
    assert X.is_ergodic()

    # test is_absorbing_chain
    T = Matrix([[0, 1, 0],
                [1, 0, 0],
                [0, 0, 1]])
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_absorbing_chain()
    # https://en.wikipedia.org/wiki/Absorbing_Markov_chain
    T = Matrix([[1, 1, 0, 0],
                [0, 1, 1, 0],
                [1, 0, 0, 1],
                [0, 0, 0, 2]])/2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_absorbing_chain()
    T = Matrix([[2, 0, 0, 0, 0],
                [1, 0, 1, 0, 0],
                [0, 1, 0, 1, 0],
                [0, 0, 1, 0, 1],
                [0, 0, 0, 0, 2]])/2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_absorbing_chain()

    # test custom state space
    Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2)
    tuples = Y10.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1], [2, 3])
    assert recurrence == (True, False)
    assert periods == (1, 1)
    assert Y10.canonical_form() == ([1, 2, 3], TO2)
    assert Y10.decompose() == ([1, 2, 3], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])

    # testing miscellaneous queries
    T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)],
                [Rational(1, 3), 0, Rational(2, 3)],
                [S.Half, S.Half, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
    Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
    assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
    raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))

    # testing miscellaneous queries with different state space
    X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
    assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
    Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    a = X.state_space.args[0]
    c = X.state_space.args[2]
    assert (E(X[1] ** 2, Eq(X[0], 1)) - (a**2/3 + 2*c**2/3)).simplify() == 0
    assert (variance(X[1], Eq(X[0], 1)) - (2*(-a/3 + c/3)**2/3 + (2*a/3 - 2*c/3)**2/3)).simplify() == 0
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))

    #testing queries with multiple RandomIndexedSymbols
    T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    assert P(Eq(Y[7], Y[5]), Eq(Y[2], 0)).round(5) == Float(0.44428, 5)
    assert P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) == Float(0.36, 2)
    assert P(Le(Y[5], Y[10]), Eq(Y[4], 2)).round(6) == Float(0.583120, 6)
    assert Float(P(Eq(Y[10], Y[5]), Eq(Y[4], 1)), 14) == Float(1 - P(Ne(Y[10], Y[5]), Eq(Y[4], 1)), 14)
    assert Float(P(Gt(Y[8], Y[9]), Eq(Y[3], 2)), 14) == Float(1 - P(Le(Y[8], Y[9]), Eq(Y[3], 2)), 14)
    assert Float(P(Lt(Y[1], Y[4]), Eq(Y[0], 0)), 14) == Float(1 - P(Ge(Y[1], Y[4]), Eq(Y[0], 0)), 14)
    assert P(Eq(Y[5], Y[10]), Eq(Y[2], 1)) == P(Eq(Y[10], Y[5]), Eq(Y[2], 1))
    assert P(Gt(Y[1], Y[2]), Eq(Y[0], 1)) == P(Lt(Y[2], Y[1]), Eq(Y[0], 1))
    assert P(Ge(Y[7], Y[6]), Eq(Y[4], 1)) == P(Le(Y[6], Y[7]), Eq(Y[4], 1))

    #test symbolic queries
    a, b, c, d = symbols('a b c d')
    T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)], [Rational(3, 10), Rational(4, 10), Rational(3, 10)], [Rational(7, 10), Rational(2, 10), Rational(1, 10)]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    query = P(Eq(Y[a], b), Eq(Y[c], d))
    assert query.subs({a:10, b:2, c:5, d:1}).evalf().round(4) == P(Eq(Y[10], 2), Eq(Y[5], 1)).round(4)
    assert query.subs({a:15, b:0, c:10, d:1}).evalf().round(4) == P(Eq(Y[15], 0), Eq(Y[10], 1)).round(4)
    query_gt = P(Gt(Y[a], b), Eq(Y[c], d))
    query_le = P(Le(Y[a], b), Eq(Y[c], d))
    assert query_gt.subs({a:5, b:2, c:1, d:0}).evalf() + query_le.subs({a:5, b:2, c:1, d:0}).evalf() == 1.0
    query_ge = P(Ge(Y[a], b), Eq(Y[c], d))
    query_lt = P(Lt(Y[a], b), Eq(Y[c], d))
    assert query_ge.subs({a:4, b:1, c:0, d:2}).evalf() + query_lt.subs({a:4, b:1, c:0, d:2}).evalf() == 1.0

    #test issue 20078
    assert (2*Y[1] + 3*Y[1]).simplify() == 5*Y[1]
    assert (2*Y[1] - 3*Y[1]).simplify() == -Y[1]
    assert (2*(0.25*Y[1])).simplify() == 0.5*Y[1]
    assert ((2*Y[1]) * (0.25*Y[1])).simplify() == 0.5*Y[1]**2
    assert (Y[1]**2 + Y[1]**3).simplify() == (Y[1] + 1)*Y[1]**2

def test_sample_stochastic_process():
    if not import_module('scipy'):
        skip('SciPy Not installed. Skip sampling tests')
    import random
    random.seed(0)
    numpy = import_module('numpy')
    if numpy:
        numpy.random.seed(0) # scipy uses numpy to sample so to set its seed
    T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    for samps in range(10):
        assert next(sample_stochastic_process(Y)) in Y.state_space
    Z = DiscreteMarkovChain("Z", ['1', 1, 0], T)
    for samps in range(10):
        assert next(sample_stochastic_process(Z)) in Z.state_space

    T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)],
                [Rational(1, 3), 0, Rational(2, 3)],
                [S.Half, S.Half, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    for samps in range(10):
        assert next(sample_stochastic_process(X)) in X.state_space
    W = DiscreteMarkovChain('W', [1, pi, oo], T)
    for samps in range(10):
        assert next(sample_stochastic_process(W)) in W.state_space


def test_ContinuousMarkovChain():
    T1 = Matrix([[S(-2), S(2), S.Zero],
                 [S.Zero, S.NegativeOne, S.One],
                 [Rational(3, 2), Rational(3, 2), S(-3)]])
    C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
    assert C1.limiting_distribution() == ImmutableMatrix([[Rational(3, 19), Rational(12, 19), Rational(4, 19)]])

    T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero], [S.Zero, S.One, -S.One]])
    C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
    A, t = C2.generator_matrix, symbols('t', positive=True)
    assert C2.transition_probabilities(A)(t) == Matrix([[S.Half + exp(-2*t)/2, S.Half - exp(-2*t)/2, 0],
                                                       [S.Half - exp(-2*t)/2, S.Half + exp(-2*t)/2, 0],
                                                       [S.Half - exp(-t) + exp(-2*t)/2, S.Half - exp(-2*t)/2, exp(-t)]])
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert P(Eq(C2(1), 1), Eq(C2(0), 1), evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1))
    assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2)/2 + S.Half
    assert P(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
                Eq(P(Eq(C2(1), 0)), S.Half)) == (Rational(1, 4) - exp(-2)/4)*(exp(-2)/2 + S.Half)
    assert P(Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
                (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
                Eq(P(Eq(C2(1), 0)), Rational(1, 4)) & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One
    assert E(C2(Rational(3, 2)), Eq(C2(0), 2)) == -exp(-3)/2 + 2*exp(Rational(-3, 2)) + S.Half
    assert variance(C2(Rational(3, 2)), Eq(C2(0), 1)) == ((S.Half - exp(-3)/2)**2*(exp(-3)/2 + S.Half)
                                                    + (Rational(-1, 2) - exp(-3)/2)**2*(S.Half - exp(-3)/2))
    raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
    assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)), S.Half)) == Probability(Eq(C2(1), 0))
    TS1 = MatrixSymbol('G', 3, 3)
    CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
    A = CS1.generator_matrix
    assert CS1.transition_probabilities(A)(t) == exp(t*A)

    C3 = ContinuousMarkovChain('C', [Symbol('0'), Symbol('1'), Symbol('2')], T2)
    assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2)/2 + S.Half
    assert P(Eq(C3(1), Symbol('1')), Eq(C3(0), Symbol('1'))) == exp(-2)/2 + S.Half

    #test probability queries
    G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]])
    C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
    assert P(Eq(C(7.385), C(3.19)), Eq(C(0.862), 0)).round(5) == Float(0.35469, 5)
    assert P(Gt(C(98.715), C(19.807)), Eq(C(11.314), 2)).round(5) == Float(0.32452, 5)
    assert P(Le(C(5.9), C(10.112)), Eq(C(4), 1)).round(6) == Float(0.675214, 6)
    assert Float(P(Eq(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14) == Float(1 - P(Ne(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14)
    assert Float(P(Gt(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14) == Float(1 - P(Le(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14)
    assert Float(P(Lt(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14) == Float(1 - P(Ge(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14)
    assert P(Eq(C(5.243), C(10.912)), Eq(C(2.174), 1)) == P(Eq(C(10.912), C(5.243)), Eq(C(2.174), 1))
    assert P(Gt(C(2.344), C(9.9)), Eq(C(1.102), 1)) == P(Lt(C(9.9), C(2.344)), Eq(C(1.102), 1))
    assert P(Ge(C(7.87), C(1.008)), Eq(C(0.153), 1)) == P(Le(C(1.008), C(7.87)), Eq(C(0.153), 1))

    #test symbolic queries
    a, b, c, d = symbols('a b c d')
    query = P(Eq(C(a), b), Eq(C(c), d))
    assert query.subs({a:3.65, b:2, c:1.78, d:1}).evalf().round(10) == P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10)
    query_gt = P(Gt(C(a), b), Eq(C(c), d))
    query_le = P(Le(C(a), b), Eq(C(c), d))
    assert query_gt.subs({a:13.2, b:0, c:3.29, d:2}).evalf() + query_le.subs({a:13.2, b:0, c:3.29, d:2}).evalf() == 1.0
    query_ge = P(Ge(C(a), b), Eq(C(c), d))
    query_lt = P(Lt(C(a), b), Eq(C(c), d))
    assert query_ge.subs({a:7.43, b:1, c:1.45, d:0}).evalf() + query_lt.subs({a:7.43, b:1, c:1.45, d:0}).evalf() == 1.0

    #test issue 20078
    assert (2*C(1) + 3*C(1)).simplify() == 5*C(1)
    assert (2*C(1) - 3*C(1)).simplify() == -C(1)
    assert (2*(0.25*C(1))).simplify() == 0.5*C(1)
    assert (2*C(1) * 0.25*C(1)).simplify() == 0.5*C(1)**2
    assert (C(1)**2 + C(1)**3).simplify() == (C(1) + 1)*C(1)**2

def test_BernoulliProcess():

    B = BernoulliProcess("B", p=0.6, success=1, failure=0)
    assert B.state_space == FiniteSet(0, 1)
    assert B.index_set == S.Naturals0
    assert B.success == 1
    assert B.failure == 0

    X = BernoulliProcess("X", p=Rational(1,3), success='H', failure='T')
    assert X.state_space == FiniteSet('H', 'T')
    H, T = symbols("H,T")
    assert E(X[1]+X[2]*X[3]) == H**2/9 + 4*H*T/9 + H/3 + 4*T**2/9 + 2*T/3

    t, x = symbols('t, x', positive=True, integer=True)
    assert isinstance(B[t], RandomIndexedSymbol)

    raises(ValueError, lambda: BernoulliProcess("X", p=1.1, success=1, failure=0))
    raises(NotImplementedError, lambda: B(t))

    raises(IndexError, lambda: B[-3])
    assert B.joint_distribution(B[3], B[9]) == JointDistributionHandmade(Lambda((B[3], B[9]),
                Piecewise((0.6, Eq(B[3], 1)), (0.4, Eq(B[3], 0)), (0, True))
                *Piecewise((0.6, Eq(B[9], 1)), (0.4, Eq(B[9], 0)), (0, True))))

    assert B.joint_distribution(2, B[4]) == JointDistributionHandmade(Lambda((B[2], B[4]),
                Piecewise((0.6, Eq(B[2], 1)), (0.4, Eq(B[2], 0)), (0, True))
                *Piecewise((0.6, Eq(B[4], 1)), (0.4, Eq(B[4], 0)), (0, True))))

    # Test for the sum distribution of Bernoulli Process RVs
    Y = B[1] + B[2] + B[3]
    assert P(Eq(Y, 0)).round(2) == Float(0.06, 1)
    assert P(Eq(Y, 2)).round(2) == Float(0.43, 2)
    assert P(Eq(Y, 4)).round(2) == 0
    assert P(Gt(Y, 1)).round(2) == Float(0.65, 2)
    # Test for independency of each Random Indexed variable
    assert P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2) == Float(0.06, 1)

    assert E(2 * B[1] + B[2]).round(2) == Float(1.80, 3)
    assert E(2 * B[1] + B[2] + 5).round(2) == Float(6.80, 3)
    assert E(B[2] * B[4] + B[10]).round(2) == Float(0.96, 2)
    assert E(B[2] > 0, Eq(B[1],1) & Eq(B[2],1)).round(2) == Float(0.60,2)
    assert E(B[1]) == 0.6
    assert P(B[1] > 0).round(2) == Float(0.60, 2)
    assert P(B[1] < 1).round(2) == Float(0.40, 2)
    assert P(B[1] > 0, B[2] <= 1).round(2) == Float(0.60, 2)
    assert P(B[12] * B[5] > 0).round(2) == Float(0.36, 2)
    assert P(B[12] * B[5] > 0, B[4] < 1).round(2) == Float(0.36, 2)
    assert P(Eq(B[2], 1), B[2] > 0) == 1.0
    assert P(Eq(B[5], 3)) == 0
    assert P(Eq(B[1], 1), B[1] < 0) == 0
    assert P(B[2] > 0, Eq(B[2], 1)) == 1
    assert P(B[2] < 0, Eq(B[2], 1)) == 0
    assert P(B[2] > 0, B[2]==7) == 0
    assert P(B[5] > 0, B[5]) == BernoulliDistribution(0.6, 0, 1)
    raises(ValueError, lambda: P(3))
    raises(ValueError, lambda: P(B[3] > 0, 3))

    # test issue 19456
    expr = Sum(B[t], (t, 0, 4))
    expr2 = Sum(B[t], (t, 1, 3))
    expr3 = Sum(B[t]**2, (t, 1, 3))
    assert expr.doit() == B[0] + B[1] + B[2] + B[3] + B[4]
    assert expr2.doit() == Y
    assert expr3.doit() == B[1]**2 + B[2]**2 + B[3]**2
    assert B[2*t].free_symbols == {B[2*t], t}
    assert B[4].free_symbols == {B[4]}
    assert B[x*t].free_symbols == {B[x*t], x, t}

    #test issue 20078
    assert (2*B[t] + 3*B[t]).simplify() == 5*B[t]
    assert (2*B[t] - 3*B[t]).simplify() == -B[t]
    assert (2*(0.25*B[t])).simplify() == 0.5*B[t]
    assert (2*B[t] * 0.25*B[t]).simplify() == 0.5*B[t]**2
    assert (B[t]**2 + B[t]**3).simplify() == (B[t] + 1)*B[t]**2

def test_PoissonProcess():
    X = PoissonProcess("X", 3)
    assert X.state_space == S.Naturals0
    assert X.index_set == Interval(0, oo)
    assert X.lamda == 3

    t, d, x, y = symbols('t d x y', positive=True)
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.distribution(t) == PoissonDistribution(3*t)
    with warns_deprecated_sympy():
        X.distribution(X(t))
    raises(ValueError, lambda: PoissonProcess("X", -1))
    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-5))

    assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(Lambda((X(2), X(3)),
                6**X(2)*9**X(3)*exp(-15)/(factorial(X(2))*factorial(X(3)))))

    assert X.joint_distribution(4, 6) == JointDistributionHandmade(Lambda((X(4), X(6)),
                12**X(4)*18**X(6)*exp(-30)/(factorial(X(4))*factorial(X(6)))))

    assert P(X(t) < 1) == exp(-3*t)
    assert P(Eq(X(t), 0), Contains(t, Interval.Lopen(3, 5))) == exp(-6) # exp(-2*lamda)
    res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4)))
    assert res == 3*exp(-3)

    # Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals
    assert P(Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1), Contains(t, Interval.Lopen(0, 1))
    & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3))
    & Contains(y, Interval.Lopen(3, 4))) == res**4

    # Return Probability because of overlapping intervals
    assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2))
    & Contains(d, Interval.Ropen(2, 4))) == \
                Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2))
                & Contains(d, Interval.Ropen(2, 4)))

    raises(ValueError, lambda: P(Eq(X(t), 2) & Eq(X(d), 3),
    Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))) # no bound on d
    assert P(Eq(X(3), 2)) == 81*exp(-9)/2
    assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0, 5))) == 225*exp(-15)/2

    # Check that probability works correctly by adding it to 1
    res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5)))
    res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5)))
    assert res1 == 691*exp(-15)
    assert (res1 + res2).simplify() == 1

    # Check Not and  Or
    assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \
            Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1
    assert P(Eq(X(t), 2) | Ne(X(t), 4), Contains(t, Interval.Ropen(2, 4))) == 1 - 36*exp(-6)
    raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d)))
    assert E(X(t)) == 3*t  # property of the distribution at a given timestamp
    assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == 75
    assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12
    assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
    & Contains(d, Interval.Ropen(1, 2))) == \
            Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1))
            & Contains(d, Interval.Ropen(1, 2)))

    # Value Error because of infinite time bound
    raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo))))

    # Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0
    assert E((X(t) + X(d))*(X(t) - X(d)), Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2))) == 0
    assert E(X(2) + x*E(X(5))) == 15*x + 6
    assert E(x*X(1) + y) == 3*x + y
    assert P(Eq(X(1), 2) & Eq(X(t), 3), Contains(t, Interval.Lopen(1, 2))) == 81*exp(-6)/4
    Y = PoissonProcess("Y", 6)
    Z = X + Y
    assert Z.lamda == X.lamda + Y.lamda == 9
    raises(ValueError, lambda: X + 5) # should be added be only PoissonProcess instance
    N, M = Z.split(4, 5)
    assert N.lamda == 4
    assert M.lamda == 5
    raises(ValueError, lambda: Z.split(3, 2)) # 2+3 != 9

    raises(ValueError, lambda :P(Eq(X(t), 0), Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0)))
    # check if it handles queries with two random variables in one args
    res1 = P(Eq(N(3), N(5)))
    assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5)))
    res2 = P(N(3) > N(1))
    assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3)))
    assert P(N(3) < N(1)) == 0 # condition is not possible
    res3 = P(N(3) <= N(1)) # holds only for Eq(N(3), N(1))
    assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3)))

    # tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
    X = PoissonProcess('X', 10) # 11.1
    assert P(Eq(X(S(1)/3), 3) & Eq(X(1), 10)) == exp(-10)*Rational(8000000000, 11160261)
    assert P(Eq(X(1), 1), Eq(X(S(1)/3), 3)) == 0
    assert P(Eq(X(1), 10), Eq(X(S(1)/3), 3)) == P(Eq(X(S(2)/3), 7))

    X = PoissonProcess('X', 2) # 11.2
    assert P(X(S(1)/2) < 1) == exp(-1)
    assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4)
    assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4)

    X = PoissonProcess('X', 3)
    assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4)*exp(-6)

    # check few properties
    assert P(X(2) <= 3, X(1)>=1) == 3*P(Eq(X(1), 0)) + 2*P(Eq(X(1), 1)) + P(Eq(X(1), 2))
    assert P(X(2) <= 3, X(1) > 1) == 2*P(Eq(X(1), 0)) + 1*P(Eq(X(1), 1))
    assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3))*P(Eq(X(1), 2))
    assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1))

    #test issue 20078
    assert (2*X(t) + 3*X(t)).simplify() == 5*X(t)
    assert (2*X(t) - 3*X(t)).simplify() == -X(t)
    assert (2*(0.25*X(t))).simplify() == 0.5*X(t)
    assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2
    assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2

def test_WienerProcess():
    X = WienerProcess("X")
    assert X.state_space == S.Reals
    assert X.index_set == Interval(0, oo)

    t, d, x, y = symbols('t d x y', positive=True)
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.distribution(t) == NormalDistribution(0, sqrt(t))
    with warns_deprecated_sympy():
        X.distribution(X(t))
    raises(ValueError, lambda: PoissonProcess("X", -1))
    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-2))

    assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
        Lambda((X(2), X(3)), sqrt(6)*exp(-X(2)**2/4)*exp(-X(3)**2/6)/(12*pi)))
    assert X.joint_distribution(4, 6) == JointDistributionHandmade(
        Lambda((X(4), X(6)), sqrt(6)*exp(-X(4)**2/8)*exp(-X(6)**2/12)/(24*pi)))

    assert P(X(t) < 3).simplify() == erf(3*sqrt(2)/(2*sqrt(t)))/2 + S(1)/2
    assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\
                erf(sqrt(2)/2)/2

    # Equivalent to P(X(1)>1)**4
    assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1),
        Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))
        & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\
        (1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16

    # Contains an overlapping interval so, return Probability
    assert P((X(t)< 2) & (X(d)> 3), Contains(t, Interval.Lopen(0, 2))
        & Contains(d, Interval.Ropen(2, 4))) == Probability((X(d) > 3) & (X(t) < 2),
        Contains(d, Interval.Ropen(2, 4)) & Contains(t, Interval.Lopen(0, 2)))

    assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
        Contains(d, Interval.Lopen(7, 8))).simplify()) == \
                '-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1'
    # Distribution has mean 0 at each timestamp
    assert E(X(t)) == 0
    assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
    & Contains(d, Interval.Ropen(1, 2))) == Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2),
    Contains(d, Interval.Ropen(1, 2)) & Contains(t, Interval.Lopen(0, 1)))
    assert E(X(t) + x*E(X(3))) == 0

    #test issue 20078
    assert (2*X(t) + 3*X(t)).simplify() == 5*X(t)
    assert (2*X(t) - 3*X(t)).simplify() == -X(t)
    assert (2*(0.25*X(t))).simplify() == 0.5*X(t)
    assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2
    assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2


def test_GammaProcess_symbolic():
    t, d, x, y, g, l = symbols('t d x y g l', positive=True)
    X = GammaProcess("X", l, g)

    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-1))
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.state_space == Interval(0, oo)
    assert X.distribution(t) == GammaDistribution(g*t, 1/l)
    with warns_deprecated_sympy():
        X.distribution(X(t))
    assert X.joint_distribution(5, X(3)) == JointDistributionHandmade(Lambda(
        (X(5), X(3)), l**(8*g)*exp(-l*X(3))*exp(-l*X(5))*X(3)**(3*g - 1)*X(5)**(5*g
        - 1)/(gamma(3*g)*gamma(5*g))))
    # property of the gamma process at any given timestamp
    assert E(X(t)) == g*t/l
    assert variance(X(t)).simplify() == g*t/l**2

    # Equivalent to E(2*X(1)) + E(X(1)**2) + E(X(1)**3), where E(X(1)) == g/l
    assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == \
            2*g/l + (g**2 + g)/l**2 + (g**3 + 3*g**2 + 2*g)/l**3

    assert P(X(t) > 3, Contains(t, Interval.Lopen(3, 4))).simplify() == \
                                1 - lowergamma(g, 3*l)/gamma(g) # equivalent to P(X(1)>3)


    #test issue 20078
    assert (2*X(t) + 3*X(t)).simplify() == 5*X(t)
    assert (2*X(t) - 3*X(t)).simplify() == -X(t)
    assert (2*(0.25*X(t))).simplify() == 0.5*X(t)
    assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2
    assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2
def test_GammaProcess_numeric():
    t, d, x, y = symbols('t d x y', positive=True)
    X = GammaProcess("X", 1, 2)
    assert X.state_space == Interval(0, oo)
    assert X.index_set == Interval(0, oo)
    assert X.lamda == 1
    assert X.gamma == 2

    raises(ValueError, lambda: GammaProcess("X", -1, 2))
    raises(ValueError, lambda: GammaProcess("X", 0, -2))
    raises(ValueError, lambda: GammaProcess("X", -1, -2))

    # all are independent because of non-overlapping intervals
    assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t,
        Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x,
        Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() == \
                                                            120*exp(-10)

    # Check working with Not and Or
    assert P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
        Contains(d, Interval.Lopen(7, 8))).simplify() == -4*exp(-3) + 472*exp(-8)/3 + 1
    assert P((X(t) > 2) | (X(t) < 4), Contains(t, Interval.Ropen(1, 4))).simplify() == \
                                            -643*exp(-4)/15 + 109*exp(-2)/15 + 1

    assert E(X(t)) == 2*t # E(X(t)) == gamma*t/l
    assert E(X(2) + x*E(X(5))) == 10*x + 4