Spaces:
Sleeping
Sleeping
File size: 39,335 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
from sympy.concrete.summations import Sum
from sympy.core.containers import Tuple
from sympy.core.function import Lambda
from sympy.core.numbers import (Float, Rational, oo, pi)
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.error_functions import erf
from sympy.functions.special.gamma_functions import (gamma, lowergamma)
from sympy.logic.boolalg import (And, Not)
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.immutable import ImmutableMatrix
from sympy.sets.contains import Contains
from sympy.sets.fancysets import Range
from sympy.sets.sets import (FiniteSet, Interval)
from sympy.stats import (DiscreteMarkovChain, P, TransitionMatrixOf, E,
StochasticStateSpaceOf, variance, ContinuousMarkovChain,
BernoulliProcess, PoissonProcess, WienerProcess,
GammaProcess, sample_stochastic_process)
from sympy.stats.joint_rv import JointDistribution
from sympy.stats.joint_rv_types import JointDistributionHandmade
from sympy.stats.rv import RandomIndexedSymbol
from sympy.stats.symbolic_probability import Probability, Expectation
from sympy.testing.pytest import (raises, skip, ignore_warnings,
warns_deprecated_sympy)
from sympy.external import import_module
from sympy.stats.frv_types import BernoulliDistribution
from sympy.stats.drv_types import PoissonDistribution
from sympy.stats.crv_types import NormalDistribution, GammaDistribution
from sympy.core.symbol import Str
def test_DiscreteMarkovChain():
# pass only the name
X = DiscreteMarkovChain("X")
assert isinstance(X.state_space, Range)
assert X.index_set == S.Naturals0
assert isinstance(X.transition_probabilities, MatrixSymbol)
t = symbols('t', positive=True, integer=True)
assert isinstance(X[t], RandomIndexedSymbol)
assert E(X[0]) == Expectation(X[0])
raises(TypeError, lambda: DiscreteMarkovChain(1))
raises(NotImplementedError, lambda: X(t))
raises(NotImplementedError, lambda: X.communication_classes())
raises(NotImplementedError, lambda: X.canonical_form())
raises(NotImplementedError, lambda: X.decompose())
nz = Symbol('n', integer=True)
TZ = MatrixSymbol('M', nz, nz)
SZ = Range(nz)
YZ = DiscreteMarkovChain('Y', SZ, TZ)
assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1]
raises(ValueError, lambda: sample_stochastic_process(t))
raises(ValueError, lambda: next(sample_stochastic_process(X)))
# pass name and state_space
# any hashable object should be a valid state
# states should be valid as a tuple/set/list/Tuple/Range
sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True)
state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain("Y", (1,2,3))],
Tuple(S(1), exp(sym), Str('World'), sympify=False), Range(-1, 5, 2),
[rainy, cloudy, sunny]]
chains = [DiscreteMarkovChain("Y", state_space) for state_space in state_spaces]
for i, Y in enumerate(chains):
assert isinstance(Y.transition_probabilities, MatrixSymbol)
assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(*state_spaces[i])
assert Y.number_of_states == 3
with ignore_warnings(UserWarning): # TODO: Restore tests once warnings are removed
assert P(Eq(Y[2], 1), Eq(Y[0], 2), evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
assert E(Y[0]) == Expectation(Y[0])
raises(ValueError, lambda: next(sample_stochastic_process(Y)))
raises(TypeError, lambda: DiscreteMarkovChain("Y", {1: 1}))
Y = DiscreteMarkovChain("Y", Range(1, t, 2))
assert Y.number_of_states == ceiling((t-1)/2)
# pass name and transition_probabilities
chains = [DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
DiscreteMarkovChain("Y", trans_probs=Matrix([[pi, 1-pi], [sym, 1-sym]]))]
for Z in chains:
assert Z.number_of_states == Z.transition_probabilities.shape[0]
assert isinstance(Z.transition_probabilities, ImmutableMatrix)
# pass name, state_space and transition_probabilities
T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
TS = MatrixSymbol('T', 3, 3)
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
assert Y.joint_distribution(1, Y[2], 3) == JointDistribution(Y[1], Y[2], Y[3])
raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
(TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2])).simplify() == 0
assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
assert P(Eq(YS[3], 3), Eq(YS[1], 1)) == TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2]
TO = Matrix([[0.25, 0.75, 0],[0, 0.25, 0.75],[0.75, 0, 0.25]])
assert P(Eq(Y[3], 2), Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(0.375, 3)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert E(Y[3], evaluate=False) == Expectation(Y[3])
assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
TSO = MatrixSymbol('T', 4, 4)
raises(ValueError, lambda: str(P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
raises(TypeError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
raises(ValueError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))
# extended tests for probability queries
TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
Eq(Probability(Eq(Y[0], 0)), Rational(1, 4)) & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
Probability(Eq(Y[0], 0))/4
assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [S(0), '0', 1]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) is S.Zero
assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [S(0), '0', 1]) & TransitionMatrixOf(X, TO1)) is S.Zero
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Y[1], 1)) == 0.1*Probability(Eq(Y[0], 0))
# testing properties of Markov chain
TO2 = Matrix([[S.One, 0, 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)], [0, Rational(1, 4), Rational(3, 4)]])
Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
assert Y3.fundamental_matrix() == ImmutableMatrix([[176, 81, -132], [36, 141, -52], [-44, -39, 208]])/125
assert Y2.is_absorbing_chain() == True
assert Y3.is_absorbing_chain() == False
assert Y2.canonical_form() == ([0, 1, 2], TO2)
assert Y3.canonical_form() == ([0, 1, 2], TO3)
assert Y2.decompose() == ([0, 1, 2], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])
assert Y3.decompose() == ([0, 1, 2], TO3, Matrix(0, 3, []), Matrix(0, 0, []))
TO4 = Matrix([[Rational(1, 5), Rational(2, 5), Rational(2, 5)], [Rational(1, 10), S.Half, Rational(2, 5)], [Rational(3, 5), Rational(3, 10), Rational(1, 10)]])
Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
w = ImmutableMatrix([[Rational(11, 39), Rational(16, 39), Rational(4, 13)]])
assert Y4.limiting_distribution == w
assert Y4.is_regular() == True
assert Y4.is_ergodic() == True
TS1 = MatrixSymbol('T', 3, 3)
Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
assert Y5.limiting_distribution(w, TO4).doit() == True
assert Y5.stationary_distribution(condition_set=True).subs(TS1, TO4).contains(w).doit() == S.true
TO6 = Matrix([[S.One, 0, 0, 0, 0],[S.Half, 0, S.Half, 0, 0],[0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half], [0, 0, 0, 0, 1]])
Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
assert Y6.fundamental_matrix() == ImmutableMatrix([[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One], [S.Half, S.One, Rational(3, 2)]])
assert Y6.absorbing_probabilities() == ImmutableMatrix([[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half], [Rational(1, 4), Rational(3, 4)]])
with warns_deprecated_sympy():
Y6.absorbing_probabilites()
TO7 = Matrix([[Rational(1, 2), Rational(1, 4), Rational(1, 4)], [Rational(1, 2), 0, Rational(1, 2)], [Rational(1, 4), Rational(1, 4), Rational(1, 2)]])
Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
assert Y7.is_absorbing_chain() == False
assert Y7.fundamental_matrix() == ImmutableMatrix([[Rational(86, 75), Rational(1, 25), Rational(-14, 75)],
[Rational(2, 25), Rational(21, 25), Rational(2, 25)],
[Rational(-14, 75), Rational(1, 25), Rational(86, 75)]])
# test for zero-sized matrix functionality
X = DiscreteMarkovChain('X', trans_probs=Matrix([[]]))
assert X.number_of_states == 0
assert X.stationary_distribution() == Matrix([[]])
assert X.communication_classes() == []
assert X.canonical_form() == ([], Matrix([[]]))
assert X.decompose() == ([], Matrix([[]]), Matrix([[]]), Matrix([[]]))
assert X.is_regular() == False
assert X.is_ergodic() == False
# test communication_class
# see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing
# tutorial 2.pdf
TO7 = Matrix([[0, 5, 5, 0, 0],
[0, 0, 0, 10, 0],
[5, 0, 5, 0, 0],
[0, 10, 0, 0, 0],
[0, 3, 0, 3, 4]])/10
Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
tuples = Y7.communication_classes()
classes, recurrence, periods = list(zip(*tuples))
assert classes == ([1, 3], [0, 2], [4])
assert recurrence == (True, False, False)
assert periods == (2, 1, 1)
TO8 = Matrix([[0, 0, 0, 10, 0, 0],
[5, 0, 5, 0, 0, 0],
[0, 4, 0, 0, 0, 6],
[10, 0, 0, 0, 0, 0],
[0, 10, 0, 0, 0, 0],
[0, 0, 0, 5, 5, 0]])/10
Y8 = DiscreteMarkovChain('Y', trans_probs=TO8)
tuples = Y8.communication_classes()
classes, recurrence, periods = list(zip(*tuples))
assert classes == ([0, 3], [1, 2, 5, 4])
assert recurrence == (True, False)
assert periods == (2, 2)
TO9 = Matrix([[2, 0, 0, 3, 0, 0, 3, 2, 0, 0],
[0, 10, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 2, 2, 0, 0, 0, 0, 0, 3, 3],
[0, 0, 0, 3, 0, 0, 6, 1, 0, 0],
[0, 0, 0, 0, 5, 5, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 10, 0, 0, 0, 0],
[4, 0, 0, 5, 0, 0, 1, 0, 0, 0],
[2, 0, 0, 4, 0, 0, 2, 2, 0, 0],
[3, 0, 1, 0, 0, 0, 0, 0, 4, 2],
[0, 0, 4, 0, 0, 0, 0, 0, 3, 3]])/10
Y9 = DiscreteMarkovChain('Y', trans_probs=TO9)
tuples = Y9.communication_classes()
classes, recurrence, periods = list(zip(*tuples))
assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4])
assert recurrence == (True, True, False, True, False)
assert periods == (1, 1, 1, 1, 1)
# test canonical form
# see https://web.archive.org/web/20201230182007/https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
# example 11.13
T = Matrix([[1, 0, 0, 0, 0],
[S(1) / 2, 0, S(1) / 2, 0, 0],
[0, S(1) / 2, 0, S(1) / 2, 0],
[0, 0, S(1) / 2, 0, S(1) / 2],
[0, 0, 0, 0, S(1)]])
DW = DiscreteMarkovChain('DW', [0, 1, 2, 3, 4], T)
states, A, B, C = DW.decompose()
assert states == [0, 4, 1, 2, 3]
assert A == Matrix([[1, 0], [0, 1]])
assert B == Matrix([[S(1)/2, 0], [0, 0], [0, S(1)/2]])
assert C == Matrix([[0, S(1)/2, 0], [S(1)/2, 0, S(1)/2], [0, S(1)/2, 0]])
states, new_matrix = DW.canonical_form()
assert states == [0, 4, 1, 2, 3]
assert new_matrix == Matrix([[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[S(1)/2, 0, 0, S(1)/2, 0],
[0, 0, S(1)/2, 0, S(1)/2],
[0, S(1)/2, 0, S(1)/2, 0]])
# test regular and ergodic
# https://web.archive.org/web/20201230182007/https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
T = Matrix([[0, 4, 0, 0, 0],
[1, 0, 3, 0, 0],
[0, 2, 0, 2, 0],
[0, 0, 3, 0, 1],
[0, 0, 0, 4, 0]])/4
X = DiscreteMarkovChain('X', trans_probs=T)
assert not X.is_regular()
assert X.is_ergodic()
T = Matrix([[0, 1], [1, 0]])
X = DiscreteMarkovChain('X', trans_probs=T)
assert not X.is_regular()
assert X.is_ergodic()
# http://www.math.wisc.edu/~valko/courses/331/MC2.pdf
T = Matrix([[2, 1, 1],
[2, 0, 2],
[1, 1, 2]])/4
X = DiscreteMarkovChain('X', trans_probs=T)
assert X.is_regular()
assert X.is_ergodic()
# https://docs.ufpr.br/~lucambio/CE222/1S2014/Kemeny-Snell1976.pdf
T = Matrix([[1, 1], [1, 1]])/2
X = DiscreteMarkovChain('X', trans_probs=T)
assert X.is_regular()
assert X.is_ergodic()
# test is_absorbing_chain
T = Matrix([[0, 1, 0],
[1, 0, 0],
[0, 0, 1]])
X = DiscreteMarkovChain('X', trans_probs=T)
assert not X.is_absorbing_chain()
# https://en.wikipedia.org/wiki/Absorbing_Markov_chain
T = Matrix([[1, 1, 0, 0],
[0, 1, 1, 0],
[1, 0, 0, 1],
[0, 0, 0, 2]])/2
X = DiscreteMarkovChain('X', trans_probs=T)
assert X.is_absorbing_chain()
T = Matrix([[2, 0, 0, 0, 0],
[1, 0, 1, 0, 0],
[0, 1, 0, 1, 0],
[0, 0, 1, 0, 1],
[0, 0, 0, 0, 2]])/2
X = DiscreteMarkovChain('X', trans_probs=T)
assert X.is_absorbing_chain()
# test custom state space
Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2)
tuples = Y10.communication_classes()
classes, recurrence, periods = list(zip(*tuples))
assert classes == ([1], [2, 3])
assert recurrence == (True, False)
assert periods == (1, 1)
assert Y10.canonical_form() == ([1, 2, 3], TO2)
assert Y10.decompose() == ([1, 2, 3], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])
# testing miscellaneous queries
T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)],
[Rational(1, 3), 0, Rational(2, 3)],
[S.Half, S.Half, 0]])
X = DiscreteMarkovChain('X', [0, 1, 2], T)
assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))
# testing miscellaneous queries with different state space
X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
a = X.state_space.args[0]
c = X.state_space.args[2]
assert (E(X[1] ** 2, Eq(X[0], 1)) - (a**2/3 + 2*c**2/3)).simplify() == 0
assert (variance(X[1], Eq(X[0], 1)) - (2*(-a/3 + c/3)**2/3 + (2*a/3 - 2*c/3)**2/3)).simplify() == 0
raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
#testing queries with multiple RandomIndexedSymbols
T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]])
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
assert P(Eq(Y[7], Y[5]), Eq(Y[2], 0)).round(5) == Float(0.44428, 5)
assert P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) == Float(0.36, 2)
assert P(Le(Y[5], Y[10]), Eq(Y[4], 2)).round(6) == Float(0.583120, 6)
assert Float(P(Eq(Y[10], Y[5]), Eq(Y[4], 1)), 14) == Float(1 - P(Ne(Y[10], Y[5]), Eq(Y[4], 1)), 14)
assert Float(P(Gt(Y[8], Y[9]), Eq(Y[3], 2)), 14) == Float(1 - P(Le(Y[8], Y[9]), Eq(Y[3], 2)), 14)
assert Float(P(Lt(Y[1], Y[4]), Eq(Y[0], 0)), 14) == Float(1 - P(Ge(Y[1], Y[4]), Eq(Y[0], 0)), 14)
assert P(Eq(Y[5], Y[10]), Eq(Y[2], 1)) == P(Eq(Y[10], Y[5]), Eq(Y[2], 1))
assert P(Gt(Y[1], Y[2]), Eq(Y[0], 1)) == P(Lt(Y[2], Y[1]), Eq(Y[0], 1))
assert P(Ge(Y[7], Y[6]), Eq(Y[4], 1)) == P(Le(Y[6], Y[7]), Eq(Y[4], 1))
#test symbolic queries
a, b, c, d = symbols('a b c d')
T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)], [Rational(3, 10), Rational(4, 10), Rational(3, 10)], [Rational(7, 10), Rational(2, 10), Rational(1, 10)]])
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
query = P(Eq(Y[a], b), Eq(Y[c], d))
assert query.subs({a:10, b:2, c:5, d:1}).evalf().round(4) == P(Eq(Y[10], 2), Eq(Y[5], 1)).round(4)
assert query.subs({a:15, b:0, c:10, d:1}).evalf().round(4) == P(Eq(Y[15], 0), Eq(Y[10], 1)).round(4)
query_gt = P(Gt(Y[a], b), Eq(Y[c], d))
query_le = P(Le(Y[a], b), Eq(Y[c], d))
assert query_gt.subs({a:5, b:2, c:1, d:0}).evalf() + query_le.subs({a:5, b:2, c:1, d:0}).evalf() == 1.0
query_ge = P(Ge(Y[a], b), Eq(Y[c], d))
query_lt = P(Lt(Y[a], b), Eq(Y[c], d))
assert query_ge.subs({a:4, b:1, c:0, d:2}).evalf() + query_lt.subs({a:4, b:1, c:0, d:2}).evalf() == 1.0
#test issue 20078
assert (2*Y[1] + 3*Y[1]).simplify() == 5*Y[1]
assert (2*Y[1] - 3*Y[1]).simplify() == -Y[1]
assert (2*(0.25*Y[1])).simplify() == 0.5*Y[1]
assert ((2*Y[1]) * (0.25*Y[1])).simplify() == 0.5*Y[1]**2
assert (Y[1]**2 + Y[1]**3).simplify() == (Y[1] + 1)*Y[1]**2
def test_sample_stochastic_process():
if not import_module('scipy'):
skip('SciPy Not installed. Skip sampling tests')
import random
random.seed(0)
numpy = import_module('numpy')
if numpy:
numpy.random.seed(0) # scipy uses numpy to sample so to set its seed
T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
for samps in range(10):
assert next(sample_stochastic_process(Y)) in Y.state_space
Z = DiscreteMarkovChain("Z", ['1', 1, 0], T)
for samps in range(10):
assert next(sample_stochastic_process(Z)) in Z.state_space
T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)],
[Rational(1, 3), 0, Rational(2, 3)],
[S.Half, S.Half, 0]])
X = DiscreteMarkovChain('X', [0, 1, 2], T)
for samps in range(10):
assert next(sample_stochastic_process(X)) in X.state_space
W = DiscreteMarkovChain('W', [1, pi, oo], T)
for samps in range(10):
assert next(sample_stochastic_process(W)) in W.state_space
def test_ContinuousMarkovChain():
T1 = Matrix([[S(-2), S(2), S.Zero],
[S.Zero, S.NegativeOne, S.One],
[Rational(3, 2), Rational(3, 2), S(-3)]])
C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
assert C1.limiting_distribution() == ImmutableMatrix([[Rational(3, 19), Rational(12, 19), Rational(4, 19)]])
T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero], [S.Zero, S.One, -S.One]])
C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
A, t = C2.generator_matrix, symbols('t', positive=True)
assert C2.transition_probabilities(A)(t) == Matrix([[S.Half + exp(-2*t)/2, S.Half - exp(-2*t)/2, 0],
[S.Half - exp(-2*t)/2, S.Half + exp(-2*t)/2, 0],
[S.Half - exp(-t) + exp(-2*t)/2, S.Half - exp(-2*t)/2, exp(-t)]])
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert P(Eq(C2(1), 1), Eq(C2(0), 1), evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1))
assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2)/2 + S.Half
assert P(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
Eq(P(Eq(C2(1), 0)), S.Half)) == (Rational(1, 4) - exp(-2)/4)*(exp(-2)/2 + S.Half)
assert P(Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
Eq(P(Eq(C2(1), 0)), Rational(1, 4)) & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One
assert E(C2(Rational(3, 2)), Eq(C2(0), 2)) == -exp(-3)/2 + 2*exp(Rational(-3, 2)) + S.Half
assert variance(C2(Rational(3, 2)), Eq(C2(0), 1)) == ((S.Half - exp(-3)/2)**2*(exp(-3)/2 + S.Half)
+ (Rational(-1, 2) - exp(-3)/2)**2*(S.Half - exp(-3)/2))
raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)), S.Half)) == Probability(Eq(C2(1), 0))
TS1 = MatrixSymbol('G', 3, 3)
CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
A = CS1.generator_matrix
assert CS1.transition_probabilities(A)(t) == exp(t*A)
C3 = ContinuousMarkovChain('C', [Symbol('0'), Symbol('1'), Symbol('2')], T2)
assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2)/2 + S.Half
assert P(Eq(C3(1), Symbol('1')), Eq(C3(0), Symbol('1'))) == exp(-2)/2 + S.Half
#test probability queries
G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]])
C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
assert P(Eq(C(7.385), C(3.19)), Eq(C(0.862), 0)).round(5) == Float(0.35469, 5)
assert P(Gt(C(98.715), C(19.807)), Eq(C(11.314), 2)).round(5) == Float(0.32452, 5)
assert P(Le(C(5.9), C(10.112)), Eq(C(4), 1)).round(6) == Float(0.675214, 6)
assert Float(P(Eq(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14) == Float(1 - P(Ne(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14)
assert Float(P(Gt(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14) == Float(1 - P(Le(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14)
assert Float(P(Lt(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14) == Float(1 - P(Ge(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14)
assert P(Eq(C(5.243), C(10.912)), Eq(C(2.174), 1)) == P(Eq(C(10.912), C(5.243)), Eq(C(2.174), 1))
assert P(Gt(C(2.344), C(9.9)), Eq(C(1.102), 1)) == P(Lt(C(9.9), C(2.344)), Eq(C(1.102), 1))
assert P(Ge(C(7.87), C(1.008)), Eq(C(0.153), 1)) == P(Le(C(1.008), C(7.87)), Eq(C(0.153), 1))
#test symbolic queries
a, b, c, d = symbols('a b c d')
query = P(Eq(C(a), b), Eq(C(c), d))
assert query.subs({a:3.65, b:2, c:1.78, d:1}).evalf().round(10) == P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10)
query_gt = P(Gt(C(a), b), Eq(C(c), d))
query_le = P(Le(C(a), b), Eq(C(c), d))
assert query_gt.subs({a:13.2, b:0, c:3.29, d:2}).evalf() + query_le.subs({a:13.2, b:0, c:3.29, d:2}).evalf() == 1.0
query_ge = P(Ge(C(a), b), Eq(C(c), d))
query_lt = P(Lt(C(a), b), Eq(C(c), d))
assert query_ge.subs({a:7.43, b:1, c:1.45, d:0}).evalf() + query_lt.subs({a:7.43, b:1, c:1.45, d:0}).evalf() == 1.0
#test issue 20078
assert (2*C(1) + 3*C(1)).simplify() == 5*C(1)
assert (2*C(1) - 3*C(1)).simplify() == -C(1)
assert (2*(0.25*C(1))).simplify() == 0.5*C(1)
assert (2*C(1) * 0.25*C(1)).simplify() == 0.5*C(1)**2
assert (C(1)**2 + C(1)**3).simplify() == (C(1) + 1)*C(1)**2
def test_BernoulliProcess():
B = BernoulliProcess("B", p=0.6, success=1, failure=0)
assert B.state_space == FiniteSet(0, 1)
assert B.index_set == S.Naturals0
assert B.success == 1
assert B.failure == 0
X = BernoulliProcess("X", p=Rational(1,3), success='H', failure='T')
assert X.state_space == FiniteSet('H', 'T')
H, T = symbols("H,T")
assert E(X[1]+X[2]*X[3]) == H**2/9 + 4*H*T/9 + H/3 + 4*T**2/9 + 2*T/3
t, x = symbols('t, x', positive=True, integer=True)
assert isinstance(B[t], RandomIndexedSymbol)
raises(ValueError, lambda: BernoulliProcess("X", p=1.1, success=1, failure=0))
raises(NotImplementedError, lambda: B(t))
raises(IndexError, lambda: B[-3])
assert B.joint_distribution(B[3], B[9]) == JointDistributionHandmade(Lambda((B[3], B[9]),
Piecewise((0.6, Eq(B[3], 1)), (0.4, Eq(B[3], 0)), (0, True))
*Piecewise((0.6, Eq(B[9], 1)), (0.4, Eq(B[9], 0)), (0, True))))
assert B.joint_distribution(2, B[4]) == JointDistributionHandmade(Lambda((B[2], B[4]),
Piecewise((0.6, Eq(B[2], 1)), (0.4, Eq(B[2], 0)), (0, True))
*Piecewise((0.6, Eq(B[4], 1)), (0.4, Eq(B[4], 0)), (0, True))))
# Test for the sum distribution of Bernoulli Process RVs
Y = B[1] + B[2] + B[3]
assert P(Eq(Y, 0)).round(2) == Float(0.06, 1)
assert P(Eq(Y, 2)).round(2) == Float(0.43, 2)
assert P(Eq(Y, 4)).round(2) == 0
assert P(Gt(Y, 1)).round(2) == Float(0.65, 2)
# Test for independency of each Random Indexed variable
assert P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2) == Float(0.06, 1)
assert E(2 * B[1] + B[2]).round(2) == Float(1.80, 3)
assert E(2 * B[1] + B[2] + 5).round(2) == Float(6.80, 3)
assert E(B[2] * B[4] + B[10]).round(2) == Float(0.96, 2)
assert E(B[2] > 0, Eq(B[1],1) & Eq(B[2],1)).round(2) == Float(0.60,2)
assert E(B[1]) == 0.6
assert P(B[1] > 0).round(2) == Float(0.60, 2)
assert P(B[1] < 1).round(2) == Float(0.40, 2)
assert P(B[1] > 0, B[2] <= 1).round(2) == Float(0.60, 2)
assert P(B[12] * B[5] > 0).round(2) == Float(0.36, 2)
assert P(B[12] * B[5] > 0, B[4] < 1).round(2) == Float(0.36, 2)
assert P(Eq(B[2], 1), B[2] > 0) == 1.0
assert P(Eq(B[5], 3)) == 0
assert P(Eq(B[1], 1), B[1] < 0) == 0
assert P(B[2] > 0, Eq(B[2], 1)) == 1
assert P(B[2] < 0, Eq(B[2], 1)) == 0
assert P(B[2] > 0, B[2]==7) == 0
assert P(B[5] > 0, B[5]) == BernoulliDistribution(0.6, 0, 1)
raises(ValueError, lambda: P(3))
raises(ValueError, lambda: P(B[3] > 0, 3))
# test issue 19456
expr = Sum(B[t], (t, 0, 4))
expr2 = Sum(B[t], (t, 1, 3))
expr3 = Sum(B[t]**2, (t, 1, 3))
assert expr.doit() == B[0] + B[1] + B[2] + B[3] + B[4]
assert expr2.doit() == Y
assert expr3.doit() == B[1]**2 + B[2]**2 + B[3]**2
assert B[2*t].free_symbols == {B[2*t], t}
assert B[4].free_symbols == {B[4]}
assert B[x*t].free_symbols == {B[x*t], x, t}
#test issue 20078
assert (2*B[t] + 3*B[t]).simplify() == 5*B[t]
assert (2*B[t] - 3*B[t]).simplify() == -B[t]
assert (2*(0.25*B[t])).simplify() == 0.5*B[t]
assert (2*B[t] * 0.25*B[t]).simplify() == 0.5*B[t]**2
assert (B[t]**2 + B[t]**3).simplify() == (B[t] + 1)*B[t]**2
def test_PoissonProcess():
X = PoissonProcess("X", 3)
assert X.state_space == S.Naturals0
assert X.index_set == Interval(0, oo)
assert X.lamda == 3
t, d, x, y = symbols('t d x y', positive=True)
assert isinstance(X(t), RandomIndexedSymbol)
assert X.distribution(t) == PoissonDistribution(3*t)
with warns_deprecated_sympy():
X.distribution(X(t))
raises(ValueError, lambda: PoissonProcess("X", -1))
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-5))
assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(Lambda((X(2), X(3)),
6**X(2)*9**X(3)*exp(-15)/(factorial(X(2))*factorial(X(3)))))
assert X.joint_distribution(4, 6) == JointDistributionHandmade(Lambda((X(4), X(6)),
12**X(4)*18**X(6)*exp(-30)/(factorial(X(4))*factorial(X(6)))))
assert P(X(t) < 1) == exp(-3*t)
assert P(Eq(X(t), 0), Contains(t, Interval.Lopen(3, 5))) == exp(-6) # exp(-2*lamda)
res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4)))
assert res == 3*exp(-3)
# Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals
assert P(Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3))
& Contains(y, Interval.Lopen(3, 4))) == res**4
# Return Probability because of overlapping intervals
assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4))) == \
Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4)))
raises(ValueError, lambda: P(Eq(X(t), 2) & Eq(X(d), 3),
Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))) # no bound on d
assert P(Eq(X(3), 2)) == 81*exp(-9)/2
assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0, 5))) == 225*exp(-15)/2
# Check that probability works correctly by adding it to 1
res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5)))
res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5)))
assert res1 == 691*exp(-15)
assert (res1 + res2).simplify() == 1
# Check Not and Or
assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \
Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1
assert P(Eq(X(t), 2) | Ne(X(t), 4), Contains(t, Interval.Ropen(2, 4))) == 1 - 36*exp(-6)
raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d)))
assert E(X(t)) == 3*t # property of the distribution at a given timestamp
assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == 75
assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12
assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2))) == \
Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2)))
# Value Error because of infinite time bound
raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo))))
# Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0
assert E((X(t) + X(d))*(X(t) - X(d)), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2))) == 0
assert E(X(2) + x*E(X(5))) == 15*x + 6
assert E(x*X(1) + y) == 3*x + y
assert P(Eq(X(1), 2) & Eq(X(t), 3), Contains(t, Interval.Lopen(1, 2))) == 81*exp(-6)/4
Y = PoissonProcess("Y", 6)
Z = X + Y
assert Z.lamda == X.lamda + Y.lamda == 9
raises(ValueError, lambda: X + 5) # should be added be only PoissonProcess instance
N, M = Z.split(4, 5)
assert N.lamda == 4
assert M.lamda == 5
raises(ValueError, lambda: Z.split(3, 2)) # 2+3 != 9
raises(ValueError, lambda :P(Eq(X(t), 0), Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0)))
# check if it handles queries with two random variables in one args
res1 = P(Eq(N(3), N(5)))
assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5)))
res2 = P(N(3) > N(1))
assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3)))
assert P(N(3) < N(1)) == 0 # condition is not possible
res3 = P(N(3) <= N(1)) # holds only for Eq(N(3), N(1))
assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3)))
# tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
X = PoissonProcess('X', 10) # 11.1
assert P(Eq(X(S(1)/3), 3) & Eq(X(1), 10)) == exp(-10)*Rational(8000000000, 11160261)
assert P(Eq(X(1), 1), Eq(X(S(1)/3), 3)) == 0
assert P(Eq(X(1), 10), Eq(X(S(1)/3), 3)) == P(Eq(X(S(2)/3), 7))
X = PoissonProcess('X', 2) # 11.2
assert P(X(S(1)/2) < 1) == exp(-1)
assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4)
assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4)
X = PoissonProcess('X', 3)
assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4)*exp(-6)
# check few properties
assert P(X(2) <= 3, X(1)>=1) == 3*P(Eq(X(1), 0)) + 2*P(Eq(X(1), 1)) + P(Eq(X(1), 2))
assert P(X(2) <= 3, X(1) > 1) == 2*P(Eq(X(1), 0)) + 1*P(Eq(X(1), 1))
assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3))*P(Eq(X(1), 2))
assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1))
#test issue 20078
assert (2*X(t) + 3*X(t)).simplify() == 5*X(t)
assert (2*X(t) - 3*X(t)).simplify() == -X(t)
assert (2*(0.25*X(t))).simplify() == 0.5*X(t)
assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2
assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2
def test_WienerProcess():
X = WienerProcess("X")
assert X.state_space == S.Reals
assert X.index_set == Interval(0, oo)
t, d, x, y = symbols('t d x y', positive=True)
assert isinstance(X(t), RandomIndexedSymbol)
assert X.distribution(t) == NormalDistribution(0, sqrt(t))
with warns_deprecated_sympy():
X.distribution(X(t))
raises(ValueError, lambda: PoissonProcess("X", -1))
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-2))
assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
Lambda((X(2), X(3)), sqrt(6)*exp(-X(2)**2/4)*exp(-X(3)**2/6)/(12*pi)))
assert X.joint_distribution(4, 6) == JointDistributionHandmade(
Lambda((X(4), X(6)), sqrt(6)*exp(-X(4)**2/8)*exp(-X(6)**2/12)/(24*pi)))
assert P(X(t) < 3).simplify() == erf(3*sqrt(2)/(2*sqrt(t)))/2 + S(1)/2
assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\
erf(sqrt(2)/2)/2
# Equivalent to P(X(1)>1)**4
assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1),
Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))
& Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\
(1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16
# Contains an overlapping interval so, return Probability
assert P((X(t)< 2) & (X(d)> 3), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4))) == Probability((X(d) > 3) & (X(t) < 2),
Contains(d, Interval.Ropen(2, 4)) & Contains(t, Interval.Lopen(0, 2)))
assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
Contains(d, Interval.Lopen(7, 8))).simplify()) == \
'-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1'
# Distribution has mean 0 at each timestamp
assert E(X(t)) == 0
assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2))) == Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2),
Contains(d, Interval.Ropen(1, 2)) & Contains(t, Interval.Lopen(0, 1)))
assert E(X(t) + x*E(X(3))) == 0
#test issue 20078
assert (2*X(t) + 3*X(t)).simplify() == 5*X(t)
assert (2*X(t) - 3*X(t)).simplify() == -X(t)
assert (2*(0.25*X(t))).simplify() == 0.5*X(t)
assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2
assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2
def test_GammaProcess_symbolic():
t, d, x, y, g, l = symbols('t d x y g l', positive=True)
X = GammaProcess("X", l, g)
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-1))
assert isinstance(X(t), RandomIndexedSymbol)
assert X.state_space == Interval(0, oo)
assert X.distribution(t) == GammaDistribution(g*t, 1/l)
with warns_deprecated_sympy():
X.distribution(X(t))
assert X.joint_distribution(5, X(3)) == JointDistributionHandmade(Lambda(
(X(5), X(3)), l**(8*g)*exp(-l*X(3))*exp(-l*X(5))*X(3)**(3*g - 1)*X(5)**(5*g
- 1)/(gamma(3*g)*gamma(5*g))))
# property of the gamma process at any given timestamp
assert E(X(t)) == g*t/l
assert variance(X(t)).simplify() == g*t/l**2
# Equivalent to E(2*X(1)) + E(X(1)**2) + E(X(1)**3), where E(X(1)) == g/l
assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == \
2*g/l + (g**2 + g)/l**2 + (g**3 + 3*g**2 + 2*g)/l**3
assert P(X(t) > 3, Contains(t, Interval.Lopen(3, 4))).simplify() == \
1 - lowergamma(g, 3*l)/gamma(g) # equivalent to P(X(1)>3)
#test issue 20078
assert (2*X(t) + 3*X(t)).simplify() == 5*X(t)
assert (2*X(t) - 3*X(t)).simplify() == -X(t)
assert (2*(0.25*X(t))).simplify() == 0.5*X(t)
assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2
assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2
def test_GammaProcess_numeric():
t, d, x, y = symbols('t d x y', positive=True)
X = GammaProcess("X", 1, 2)
assert X.state_space == Interval(0, oo)
assert X.index_set == Interval(0, oo)
assert X.lamda == 1
assert X.gamma == 2
raises(ValueError, lambda: GammaProcess("X", -1, 2))
raises(ValueError, lambda: GammaProcess("X", 0, -2))
raises(ValueError, lambda: GammaProcess("X", -1, -2))
# all are independent because of non-overlapping intervals
assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t,
Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x,
Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() == \
120*exp(-10)
# Check working with Not and Or
assert P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
Contains(d, Interval.Lopen(7, 8))).simplify() == -4*exp(-3) + 472*exp(-8)/3 + 1
assert P((X(t) > 2) | (X(t) < 4), Contains(t, Interval.Ropen(1, 4))).simplify() == \
-643*exp(-4)/15 + 109*exp(-2)/15 + 1
assert E(X(t)) == 2*t # E(X(t)) == gamma*t/l
assert E(X(2) + x*E(X(5))) == 10*x + 4
|