Spaces:
Sleeping
Sleeping
File size: 6,263 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from sympy.concrete.summations import Sum
from sympy.core.numbers import (oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.error_functions import erf
from sympy.functions.special.gamma_functions import gamma
from sympy.integrals.integrals import Integral
from sympy.sets.sets import Interval
from sympy.stats import (Normal, P, E, density, Gamma, Poisson, Rayleigh,
variance, Bernoulli, Beta, Uniform, cdf)
from sympy.stats.compound_rv import CompoundDistribution, CompoundPSpace
from sympy.stats.crv_types import NormalDistribution
from sympy.stats.drv_types import PoissonDistribution
from sympy.stats.frv_types import BernoulliDistribution
from sympy.testing.pytest import raises, ignore_warnings
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
from sympy.abc import x
# helpers for testing troublesome unevaluated expressions
flat = lambda s: ''.join(str(s).split())
streq = lambda *a: len(set(map(flat, a))) == 1
assert streq(x, x)
assert streq(x, 'x')
assert not streq(x, x + 1)
def test_normal_CompoundDist():
X = Normal('X', 1, 2)
Y = Normal('X', X, 4)
assert density(Y)(x).simplify() == sqrt(10)*exp(-x**2/40 + x/20 - S(1)/40)/(20*sqrt(pi))
assert E(Y) == 1 # it is always equal to mean of X
assert P(Y > 1) == S(1)/2 # as 1 is the mean
assert P(Y > 5).simplify() == S(1)/2 - erf(sqrt(10)/5)/2
assert variance(Y) == variance(X) + 4**2 # 2**2 + 4**2
# https://math.stackexchange.com/questions/1484451/
# (Contains proof of E and variance computation)
def test_poisson_CompoundDist():
k, t, y = symbols('k t y', positive=True, real=True)
G = Gamma('G', k, t)
D = Poisson('P', G)
assert density(D)(y).simplify() == t**y*(t + 1)**(-k - y)*gamma(k + y)/(gamma(k)*gamma(y + 1))
# https://en.wikipedia.org/wiki/Negative_binomial_distribution#Gamma%E2%80%93Poisson_mixture
assert E(D).simplify() == k*t # mean of NegativeBinomialDistribution
def test_bernoulli_CompoundDist():
X = Beta('X', 1, 2)
Y = Bernoulli('Y', X)
assert density(Y).dict == {0: S(2)/3, 1: S(1)/3}
assert E(Y) == P(Eq(Y, 1)) == S(1)/3
assert variance(Y) == S(2)/9
assert cdf(Y) == {0: S(2)/3, 1: 1}
# test issue 8128
a = Bernoulli('a', S(1)/2)
b = Bernoulli('b', a)
assert density(b).dict == {0: S(1)/2, 1: S(1)/2}
assert P(b > 0.5) == S(1)/2
X = Uniform('X', 0, 1)
Y = Bernoulli('Y', X)
assert E(Y) == S(1)/2
assert P(Eq(Y, 1)) == E(Y)
def test_unevaluated_CompoundDist():
# these tests need to be removed once they work with evaluation as they are currently not
# evaluated completely in sympy.
R = Rayleigh('R', 4)
X = Normal('X', 3, R)
ans = '''
Piecewise(((-sqrt(pi)*sinh(x/4 - 3/4) + sqrt(pi)*cosh(x/4 - 3/4))/(
8*sqrt(pi)), Abs(arg(x - 3)) <= pi/4), (Integral(sqrt(2)*exp(-(x - 3)
**2/(2*R**2))*exp(-R**2/32)/(32*sqrt(pi)), (R, 0, oo)), True))'''
assert streq(density(X)(x), ans)
expre = '''
Integral(X*Integral(sqrt(2)*exp(-(X-3)**2/(2*R**2))*exp(-R**2/32)/(32*
sqrt(pi)),(R,0,oo)),(X,-oo,oo))'''
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert streq(E(X, evaluate=False).rewrite(Integral), expre)
X = Poisson('X', 1)
Y = Poisson('Y', X)
Z = Poisson('Z', Y)
exprd = Sum(exp(-Y)*Y**x*Sum(exp(-1)*exp(-X)*X**Y/(factorial(X)*factorial(Y)
), (X, 0, oo))/factorial(x), (Y, 0, oo))
assert density(Z)(x) == exprd
N = Normal('N', 1, 2)
M = Normal('M', 3, 4)
D = Normal('D', M, N)
exprd = '''
Integral(sqrt(2)*exp(-(N-1)**2/8)*Integral(exp(-(x-M)**2/(2*N**2))*exp
(-(M-3)**2/32)/(8*pi*N),(M,-oo,oo))/(4*sqrt(pi)),(N,-oo,oo))'''
assert streq(density(D, evaluate=False)(x), exprd)
def test_Compound_Distribution():
X = Normal('X', 2, 4)
N = NormalDistribution(X, 4)
C = CompoundDistribution(N)
assert C.is_Continuous
assert C.set == Interval(-oo, oo)
assert C.pdf(x, evaluate=True).simplify() == exp(-x**2/64 + x/16 - S(1)/16)/(8*sqrt(pi))
assert not isinstance(CompoundDistribution(NormalDistribution(2, 3)),
CompoundDistribution)
M = MultivariateNormalDistribution([1, 2], [[2, 1], [1, 2]])
raises(NotImplementedError, lambda: CompoundDistribution(M))
X = Beta('X', 2, 4)
B = BernoulliDistribution(X, 1, 0)
C = CompoundDistribution(B)
assert C.is_Finite
assert C.set == {0, 1}
y = symbols('y', negative=False, integer=True)
assert C.pdf(y, evaluate=True) == Piecewise((S(1)/(30*beta(2, 4)), Eq(y, 0)),
(S(1)/(60*beta(2, 4)), Eq(y, 1)), (0, True))
k, t, z = symbols('k t z', positive=True, real=True)
G = Gamma('G', k, t)
X = PoissonDistribution(G)
C = CompoundDistribution(X)
assert C.is_Discrete
assert C.set == S.Naturals0
assert C.pdf(z, evaluate=True).simplify() == t**z*(t + 1)**(-k - z)*gamma(k \
+ z)/(gamma(k)*gamma(z + 1))
def test_compound_pspace():
X = Normal('X', 2, 4)
Y = Normal('Y', 3, 6)
assert not isinstance(Y.pspace, CompoundPSpace)
N = NormalDistribution(1, 2)
D = PoissonDistribution(3)
B = BernoulliDistribution(0.2, 1, 0)
pspace1 = CompoundPSpace('N', N)
pspace2 = CompoundPSpace('D', D)
pspace3 = CompoundPSpace('B', B)
assert not isinstance(pspace1, CompoundPSpace)
assert not isinstance(pspace2, CompoundPSpace)
assert not isinstance(pspace3, CompoundPSpace)
M = MultivariateNormalDistribution([1, 2], [[2, 1], [1, 2]])
raises(ValueError, lambda: CompoundPSpace('M', M))
Y = Normal('Y', X, 6)
assert isinstance(Y.pspace, CompoundPSpace)
assert Y.pspace.distribution == CompoundDistribution(NormalDistribution(X, 6))
assert Y.pspace.domain.set == Interval(-oo, oo)
|