File size: 29,348 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
from sympy.core.random import randint
from sympy.core.function import Function
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Rational, oo)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import tanh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.polys.polytools import Poly
from sympy.simplify.ratsimp import ratsimp
from sympy.solvers.ode.subscheck import checkodesol
from sympy.testing.pytest import slow
from sympy.solvers.ode.riccati import (riccati_normal, riccati_inverse_normal,
    riccati_reduced, match_riccati, inverse_transform_poly, limit_at_inf,
    check_necessary_conds, val_at_inf, construct_c_case_1,
    construct_c_case_2, construct_c_case_3, construct_d_case_4,
    construct_d_case_5, construct_d_case_6, rational_laurent_series,
    solve_riccati)

f = Function('f')
x = symbols('x')

# These are the functions used to generate the tests
# SHOULD NOT BE USED DIRECTLY IN TESTS

def rand_rational(maxint):
    return Rational(randint(-maxint, maxint), randint(1, maxint))


def rand_poly(x, degree, maxint):
    return Poly([rand_rational(maxint) for _ in range(degree+1)], x)


def rand_rational_function(x, degree, maxint):
    degnum = randint(1, degree)
    degden = randint(1, degree)
    num = rand_poly(x, degnum, maxint)
    den = rand_poly(x, degden, maxint)
    while den == Poly(0, x):
        den = rand_poly(x, degden, maxint)
    return num / den


def find_riccati_ode(ratfunc, x, yf):
    y = ratfunc
    yp = y.diff(x)
    q1 = rand_rational_function(x, 1, 3)
    q2 = rand_rational_function(x, 1, 3)
    while q2 == 0:
        q2 = rand_rational_function(x, 1, 3)
    q0 = ratsimp(yp - q1*y - q2*y**2)
    eq = Eq(yf.diff(), q0 + q1*yf + q2*yf**2)
    sol = Eq(yf, y)
    assert checkodesol(eq, sol) == (True, 0)
    return eq, q0, q1, q2


# Testing functions start

def test_riccati_transformation():
    """
    This function tests the transformation of the
    solution of a Riccati ODE to the solution of
    its corresponding normal Riccati ODE.

    Each test case 4 values -

    1. w - The solution to be transformed
    2. b1 - The coefficient of f(x) in the ODE.
    3. b2 - The coefficient of f(x)**2 in the ODE.
    4. y - The solution to the normal Riccati ODE.
    """
    tests = [
    (
        x/(x - 1),
        (x**2 + 7)/3*x,
        x,
        -x**2/(x - 1) - x*(x**2/3 + S(7)/3)/2 - 1/(2*x)
    ),
    (
        (2*x + 3)/(2*x + 2),
        (3 - 3*x)/(x + 1),
        5*x,
        -5*x*(2*x + 3)/(2*x + 2) - (3 - 3*x)/(Mul(2, x + 1, evaluate=False)) - 1/(2*x)
    ),
    (
        -1/(2*x**2 - 1),
        0,
        (2 - x)/(4*x - 2),
        (2 - x)/((4*x - 2)*(2*x**2 - 1)) - (4*x - 2)*(Mul(-4, 2 - x, evaluate=False)/(4*x - \
        2)**2 - 1/(4*x - 2))/(Mul(2, 2 - x, evaluate=False))
    ),
    (
        x,
        (8*x - 12)/(12*x + 9),
        x**3/(6*x - 9),
        -x**4/(6*x - 9) - (8*x - 12)/(Mul(2, 12*x + 9, evaluate=False)) - (6*x - 9)*(-6*x**3/(6*x \
        - 9)**2 + 3*x**2/(6*x - 9))/(2*x**3)
    )]
    for w, b1, b2, y in tests:
        assert y == riccati_normal(w, x, b1, b2)
        assert w == riccati_inverse_normal(y, x, b1, b2).cancel()

    # Test bp parameter in riccati_inverse_normal
    tests = [
    (
        (-2*x - 1)/(2*x**2 + 2*x - 2),
        -2/x,
        (-x - 1)/(4*x),
        8*x**2*(1/(4*x) + (-x - 1)/(4*x**2))/(-x - 1)**2 + 4/(-x - 1),
        -2*x*(-1/(4*x) - (-x - 1)/(4*x**2))/(-x - 1) - (-2*x - 1)*(-x - 1)/(4*x*(2*x**2 + 2*x \
        - 2)) + 1/x
    ),
    (
        3/(2*x**2),
        -2/x,
        (-x - 1)/(4*x),
        8*x**2*(1/(4*x) + (-x - 1)/(4*x**2))/(-x - 1)**2 + 4/(-x - 1),
        -2*x*(-1/(4*x) - (-x - 1)/(4*x**2))/(-x - 1) + 1/x - Mul(3, -x - 1, evaluate=False)/(8*x**3)
    )]
    for w, b1, b2, bp, y in tests:
        assert y == riccati_normal(w, x, b1, b2)
        assert w == riccati_inverse_normal(y, x, b1, b2, bp).cancel()


def test_riccati_reduced():
    """
    This function tests the transformation of a
    Riccati ODE to its normal Riccati ODE.

    Each test case 2 values -

    1. eq - A Riccati ODE.
    2. normal_eq - The normal Riccati ODE of eq.
    """
    tests = [
    (
        f(x).diff(x) - x**2 - x*f(x) - x*f(x)**2,

        f(x).diff(x) + f(x)**2 + x**3 - x**2/4 - 3/(4*x**2)
    ),
    (
        6*x/(2*x + 9) + f(x).diff(x) - (x + 1)*f(x)**2/x,

        -3*x**2*(1/x + (-x - 1)/x**2)**2/(4*(-x - 1)**2) + Mul(6, \
        -x - 1, evaluate=False)/(2*x + 9) + f(x)**2 + f(x).diff(x) \
        - (-1 + (x + 1)/x)/(x*(-x - 1))
    ),
    (
        f(x)**2 + f(x).diff(x) - (x - 1)*f(x)/(-x - S(1)/2),

        -(2*x - 2)**2/(4*(2*x + 1)**2) + (2*x - 2)/(2*x + 1)**2 + \
        f(x)**2 + f(x).diff(x) - 1/(2*x + 1)
    ),
    (
        f(x).diff(x) - f(x)**2/x,

        f(x)**2 + f(x).diff(x) + 1/(4*x**2)
    ),
    (
        -3*(-x**2 - x + 1)/(x**2 + 6*x + 1) + f(x).diff(x) + f(x)**2/x,

        f(x)**2 + f(x).diff(x) + (3*x**2/(x**2 + 6*x + 1) + 3*x/(x**2 \
        + 6*x + 1) - 3/(x**2 + 6*x + 1))/x + 1/(4*x**2)
    ),
    (
        6*x/(2*x + 9) + f(x).diff(x) - (x + 1)*f(x)/x,

        False
    ),
    (
        f(x)*f(x).diff(x) - 1/x + f(x)/3 + f(x)**2/(x**2 - 2),

        False
    )]
    for eq, normal_eq in tests:
        assert normal_eq == riccati_reduced(eq, f, x)


def test_match_riccati():
    """
    This function tests if an ODE is Riccati or not.

    Each test case has 5 values -

    1. eq - The Riccati ODE.
    2. match - Boolean indicating if eq is a Riccati ODE.
    3. b0 -
    4. b1 - Coefficient of f(x) in eq.
    5. b2 - Coefficient of f(x)**2 in eq.
    """
    tests = [
    # Test Rational Riccati ODEs
    (
        f(x).diff(x) - (405*x**3 - 882*x**2 - 78*x + 92)/(243*x**4 \
        - 945*x**3 + 846*x**2 + 180*x - 72) - 2 - f(x)**2/(3*x + 1) \
        - (S(1)/3 - x)*f(x)/(S(1)/3 - 3*x/2),

        True,

        45*x**3/(27*x**4 - 105*x**3 + 94*x**2 + 20*x - 8) - 98*x**2/ \
        (27*x**4 - 105*x**3 + 94*x**2 + 20*x - 8) - 26*x/(81*x**4 - \
        315*x**3 + 282*x**2 + 60*x - 24) + 2 + 92/(243*x**4 - 945*x**3 \
        + 846*x**2 + 180*x - 72),

        Mul(-1, 2 - 6*x, evaluate=False)/(9*x - 2),

        1/(3*x + 1)
    ),
    (
        f(x).diff(x) + 4*x/27 - (x/3 - 1)*f(x)**2 - (2*x/3 + \
        1)*f(x)/(3*x + 2) - S(10)/27 - (265*x**2 + 423*x + 162) \
        /(324*x**3 + 216*x**2),

        True,

        -4*x/27 + S(10)/27 + 3/(6*x**3 + 4*x**2) + 47/(36*x**2 \
        + 24*x) + 265/(324*x + 216),

        Mul(-1, -2*x - 3, evaluate=False)/(9*x + 6),

        x/3 - 1
    ),
    (
        f(x).diff(x) - (304*x**5 - 745*x**4 + 631*x**3 - 876*x**2 \
        + 198*x - 108)/(36*x**6 - 216*x**5 + 477*x**4 - 567*x**3 + \
        360*x**2 - 108*x) - S(17)/9 - (x - S(3)/2)*f(x)/(x/2 - \
        S(3)/2) - (x/3 - 3)*f(x)**2/(3*x),

        True,

        304*x**4/(36*x**5 - 216*x**4 + 477*x**3 - 567*x**2 + 360*x - \
        108) - 745*x**3/(36*x**5 - 216*x**4 + 477*x**3 - 567*x**2 + \
        360*x - 108) + 631*x**2/(36*x**5 - 216*x**4 + 477*x**3 - 567* \
        x**2 + 360*x - 108) - 292*x/(12*x**5 - 72*x**4 + 159*x**3 - \
        189*x**2 + 120*x - 36) + S(17)/9 - 12/(4*x**6 - 24*x**5 + \
        53*x**4 - 63*x**3 + 40*x**2 - 12*x) + 22/(4*x**5 - 24*x**4 \
        + 53*x**3 - 63*x**2 + 40*x - 12),

        Mul(-1, 3 - 2*x, evaluate=False)/(x - 3),

        Mul(-1, 9 - x, evaluate=False)/(9*x)
    ),
    # Test Non-Rational Riccati ODEs
    (
        f(x).diff(x) - x**(S(3)/2)/(x**(S(1)/2) - 2) + x**2*f(x) + \
        x*f(x)**2/(x**(S(3)/4)),
        False, 0, 0, 0
    ),
    (
        f(x).diff(x) - sin(x**2) + exp(x)*f(x) + log(x)*f(x)**2,
        False, 0, 0, 0
    ),
    (
        f(x).diff(x) - tanh(x + sqrt(x)) + f(x) + x**4*f(x)**2,
        False, 0, 0, 0
    ),
    # Test Non-Riccati ODEs
    (
        (1 - x**2)*f(x).diff(x, 2) - 2*x*f(x).diff(x) + 20*f(x),
        False, 0, 0, 0
    ),
    (
        f(x).diff(x) - x**2 + x**3*f(x) + (x**2/(x + 1))*f(x)**3,
        False, 0, 0, 0
    ),
    (
        f(x).diff(x)*f(x)**2 + (x**2 - 1)/(x**3 + 1)*f(x) + 1/(2*x \
        + 3) + f(x)**2,
        False, 0, 0, 0
    )]
    for eq, res, b0, b1, b2 in tests:
        match, funcs = match_riccati(eq, f, x)
        assert match == res
        if res:
            assert [b0, b1, b2] == funcs


def test_val_at_inf():
    """
    This function tests the valuation of rational
    function at oo.

    Each test case has 3 values -

    1. num - Numerator of rational function.
    2. den - Denominator of rational function.
    3. val_inf - Valuation of rational function at oo
    """
    tests = [
    # degree(denom) > degree(numer)
    (
        Poly(10*x**3 + 8*x**2 - 13*x + 6, x),
        Poly(-13*x**10 - x**9 + 5*x**8 + 7*x**7 + 10*x**6 + 6*x**5 - 7*x**4 + 11*x**3 - 8*x**2 + 5*x + 13, x),
         7
    ),
    (
        Poly(1, x),
        Poly(-9*x**4 + 3*x**3 + 15*x**2 - 6*x - 14, x),
         4
    ),
    # degree(denom) == degree(numer)
    (
        Poly(-6*x**3 - 8*x**2 + 8*x - 6, x),
        Poly(-5*x**3 + 12*x**2 - 6*x - 9, x),
         0
    ),
    # degree(denom) < degree(numer)
    (
        Poly(12*x**8 - 12*x**7 - 11*x**6 + 8*x**5 + 3*x**4 - x**3 + x**2 - 11*x, x),
        Poly(-14*x**2 + x, x),
         -6
    ),
    (
        Poly(5*x**6 + 9*x**5 - 11*x**4 - 9*x**3 + x**2 - 4*x + 4, x),
        Poly(15*x**4 + 3*x**3 - 8*x**2 + 15*x + 12, x),
         -2
    )]
    for num, den, val in tests:
        assert val_at_inf(num, den, x) == val


def test_necessary_conds():
    """
    This function tests the necessary conditions for
    a Riccati ODE to have a rational particular solution.
    """
    # Valuation at Infinity is an odd negative integer
    assert check_necessary_conds(-3, [1, 2, 4]) == False
    # Valuation at Infinity is a positive integer lesser than 2
    assert check_necessary_conds(1, [1, 2, 4]) == False
    # Multiplicity of a pole is an odd integer greater than 1
    assert check_necessary_conds(2, [3, 1, 6]) == False
    # All values are correct
    assert check_necessary_conds(-10, [1, 2, 8, 12]) == True


def test_inverse_transform_poly():
    """
    This function tests the substitution x -> 1/x
    in rational functions represented using Poly.
    """
    fns = [
    (15*x**3 - 8*x**2 - 2*x - 6)/(18*x + 6),

    (180*x**5 + 40*x**4 + 80*x**3 + 30*x**2 - 60*x - 80)/(180*x**3 - 150*x**2 + 75*x + 12),

    (-15*x**5 - 36*x**4 + 75*x**3 - 60*x**2 - 80*x - 60)/(80*x**4 + 60*x**3 + 60*x**2 + 60*x - 80),

    (60*x**7 + 24*x**6 - 15*x**5 - 20*x**4 + 30*x**2 + 100*x - 60)/(240*x**2 - 20*x - 30),

    (30*x**6 - 12*x**5 + 15*x**4 - 15*x**2 + 10*x + 60)/(3*x**10 - 45*x**9 + 15*x**5 + 15*x**4 - 5*x**3 \
    + 15*x**2 + 45*x - 15)
    ]
    for f in fns:
        num, den = [Poly(e, x) for e in f.as_numer_denom()]
        num, den = inverse_transform_poly(num, den, x)
        assert f.subs(x, 1/x).cancel() == num/den


def test_limit_at_inf():
    """
    This function tests the limit at oo of a
    rational function.

    Each test case has 3 values -

    1. num - Numerator of rational function.
    2. den - Denominator of rational function.
    3. limit_at_inf - Limit of rational function at oo
    """
    tests = [
    # deg(denom) > deg(numer)
    (
        Poly(-12*x**2 + 20*x + 32, x),
        Poly(32*x**3 + 72*x**2 + 3*x - 32, x),
        0
    ),
    # deg(denom) < deg(numer)
    (
        Poly(1260*x**4 - 1260*x**3 - 700*x**2 - 1260*x + 1400, x),
        Poly(6300*x**3 - 1575*x**2 + 756*x - 540, x),
        oo
    ),
    # deg(denom) < deg(numer), one of the leading coefficients is negative
    (
        Poly(-735*x**8 - 1400*x**7 + 1680*x**6 - 315*x**5 - 600*x**4 + 840*x**3 - 525*x**2 \
        + 630*x + 3780, x),
        Poly(1008*x**7 - 2940*x**6 - 84*x**5 + 2940*x**4 - 420*x**3 + 1512*x**2 + 105*x + 168, x),
        -oo
    ),
    # deg(denom) == deg(numer)
    (
        Poly(105*x**7 - 960*x**6 + 60*x**5 + 60*x**4 - 80*x**3 + 45*x**2 + 120*x + 15, x),
        Poly(735*x**7 + 525*x**6 + 720*x**5 + 720*x**4 - 8400*x**3 - 2520*x**2 + 2800*x + 280, x),
        S(1)/7
    ),
    (
        Poly(288*x**4 - 450*x**3 + 280*x**2 - 900*x - 90, x),
        Poly(607*x**4 + 840*x**3 - 1050*x**2 + 420*x + 420, x),
        S(288)/607
    )]
    for num, den, lim in tests:
        assert limit_at_inf(num, den, x) == lim


def test_construct_c_case_1():
    """
    This function tests the Case 1 in the step
    to calculate coefficients of c-vectors.

    Each test case has 4 values -

    1. num - Numerator of the rational function a(x).
    2. den - Denominator of the rational function a(x).
    3. pole - Pole of a(x) for which c-vector is being
       calculated.
    4. c - The c-vector for the pole.
    """
    tests = [
    (
        Poly(-3*x**3 + 3*x**2 + 4*x - 5, x, extension=True),
        Poly(4*x**8 + 16*x**7 + 9*x**5 + 12*x**4 + 6*x**3 + 12*x**2, x, extension=True),
        S(0),
        [[S(1)/2 + sqrt(6)*I/6], [S(1)/2 - sqrt(6)*I/6]]
    ),
    (
        Poly(1200*x**3 + 1440*x**2 + 816*x + 560, x, extension=True),
        Poly(128*x**5 - 656*x**4 + 1264*x**3 - 1125*x**2 + 385*x + 49, x, extension=True),
        S(7)/4,
        [[S(1)/2 + sqrt(16367978)/634], [S(1)/2 - sqrt(16367978)/634]]
    ),
    (
        Poly(4*x + 2, x, extension=True),
        Poly(18*x**4 + (2 - 18*sqrt(3))*x**3 + (14 - 11*sqrt(3))*x**2 + (4 - 6*sqrt(3))*x \
            + 8*sqrt(3) + 16, x, domain='QQ<sqrt(3)>'),
        (S(1) + sqrt(3))/2,
        [[S(1)/2 + sqrt(Mul(4, 2*sqrt(3) + 4, evaluate=False)/(19*sqrt(3) + 44) + 1)/2], \
            [S(1)/2 - sqrt(Mul(4, 2*sqrt(3) + 4, evaluate=False)/(19*sqrt(3) + 44) + 1)/2]]
    )]
    for num, den, pole, c in tests:
        assert construct_c_case_1(num, den, x, pole) == c


def test_construct_c_case_2():
    """
    This function tests the Case 2 in the step
    to calculate coefficients of c-vectors.

    Each test case has 5 values -

    1. num - Numerator of the rational function a(x).
    2. den - Denominator of the rational function a(x).
    3. pole - Pole of a(x) for which c-vector is being
       calculated.
    4. mul - The multiplicity of the pole.
    5. c - The c-vector for the pole.
    """
    tests = [
    # Testing poles with multiplicity 2
    (
        Poly(1, x, extension=True),
        Poly((x - 1)**2*(x - 2), x, extension=True),
        1, 2,
        [[-I*(-1 - I)/2], [I*(-1 + I)/2]]
    ),
    (
        Poly(3*x**5 - 12*x**4 - 7*x**3 + 1, x, extension=True),
        Poly((3*x - 1)**2*(x + 2)**2, x, extension=True),
        S(1)/3, 2,
        [[-S(89)/98], [-S(9)/98]]
    ),
    # Testing poles with multiplicity 4
    (
        Poly(x**3 - x**2 + 4*x, x, extension=True),
        Poly((x - 2)**4*(x + 5)**2, x, extension=True),
        2, 4,
        [[7*sqrt(3)*(S(60)/343 - 4*sqrt(3)/7)/12, 2*sqrt(3)/7], \
        [-7*sqrt(3)*(S(60)/343 + 4*sqrt(3)/7)/12, -2*sqrt(3)/7]]
    ),
    (
        Poly(3*x**5 + x**4 + 3, x, extension=True),
        Poly((4*x + 1)**4*(x + 2), x, extension=True),
        -S(1)/4, 4,
        [[128*sqrt(439)*(-sqrt(439)/128 - S(55)/14336)/439, sqrt(439)/256], \
        [-128*sqrt(439)*(sqrt(439)/128 - S(55)/14336)/439, -sqrt(439)/256]]
    ),
    # Testing poles with multiplicity 6
    (
        Poly(x**3 + 2, x, extension=True),
        Poly((3*x - 1)**6*(x**2 + 1), x, extension=True),
        S(1)/3, 6,
        [[27*sqrt(66)*(-sqrt(66)/54 - S(131)/267300)/22, -2*sqrt(66)/1485, sqrt(66)/162], \
        [-27*sqrt(66)*(sqrt(66)/54 - S(131)/267300)/22, 2*sqrt(66)/1485, -sqrt(66)/162]]
    ),
    (
        Poly(x**2 + 12, x, extension=True),
        Poly((x - sqrt(2))**6, x, extension=True),
        sqrt(2), 6,
        [[sqrt(14)*(S(6)/7 - 3*sqrt(14))/28, sqrt(7)/7, sqrt(14)], \
        [-sqrt(14)*(S(6)/7 + 3*sqrt(14))/28, -sqrt(7)/7, -sqrt(14)]]
    )]
    for num, den, pole, mul, c in tests:
        assert construct_c_case_2(num, den, x, pole, mul) == c


def test_construct_c_case_3():
    """
    This function tests the Case 3 in the step
    to calculate coefficients of c-vectors.
    """
    assert construct_c_case_3() == [[1]]


def test_construct_d_case_4():
    """
    This function tests the Case 4 in the step
    to calculate coefficients of the d-vector.

    Each test case has 4 values -

    1. num - Numerator of the rational function a(x).
    2. den - Denominator of the rational function a(x).
    3. mul - Multiplicity of oo as a pole.
    4. d - The d-vector.
    """
    tests = [
    # Tests with multiplicity at oo = 2
    (
        Poly(-x**5 - 2*x**4 + 4*x**3 + 2*x + 5, x, extension=True),
        Poly(9*x**3 - 2*x**2 + 10*x - 2, x, extension=True),
        2,
        [[10*I/27, I/3, -3*I*(S(158)/243 - I/3)/2], \
        [-10*I/27, -I/3, 3*I*(S(158)/243 + I/3)/2]]
    ),
    (
        Poly(-x**6 + 9*x**5 + 5*x**4 + 6*x**3 + 5*x**2 + 6*x + 7, x, extension=True),
        Poly(x**4 + 3*x**3 + 12*x**2 - x + 7, x, extension=True),
        2,
        [[-6*I, I, -I*(17 - I)/2], [6*I, -I, I*(17 + I)/2]]
    ),
    # Tests with multiplicity at oo = 4
    (
        Poly(-2*x**6 - x**5 - x**4 - 2*x**3 - x**2 - 3*x - 3, x, extension=True),
        Poly(3*x**2 + 10*x + 7, x, extension=True),
        4,
        [[269*sqrt(6)*I/288, -17*sqrt(6)*I/36, sqrt(6)*I/3, -sqrt(6)*I*(S(16969)/2592 \
        - 2*sqrt(6)*I/3)/4], [-269*sqrt(6)*I/288, 17*sqrt(6)*I/36, -sqrt(6)*I/3, \
        sqrt(6)*I*(S(16969)/2592 + 2*sqrt(6)*I/3)/4]]
    ),
    (
        Poly(-3*x**5 - 3*x**4 - 3*x**3 - x**2 - 1, x, extension=True),
        Poly(12*x - 2, x, extension=True),
        4,
        [[41*I/192, 7*I/24, I/2, -I*(-S(59)/6912 - I)], \
        [-41*I/192, -7*I/24, -I/2, I*(-S(59)/6912 + I)]]
    ),
    # Tests with multiplicity at oo = 4
    (
        Poly(-x**7 - x**5 - x**4 - x**2 - x, x, extension=True),
        Poly(x + 2, x, extension=True),
        6,
        [[-5*I/2, 2*I, -I, I, -I*(-9 - 3*I)/2], [5*I/2, -2*I, I, -I, I*(-9 + 3*I)/2]]
    ),
    (
        Poly(-x**7 - x**6 - 2*x**5 - 2*x**4 - x**3 - x**2 + 2*x - 2, x, extension=True),
        Poly(2*x - 2, x, extension=True),
        6,
        [[3*sqrt(2)*I/4, 3*sqrt(2)*I/4, sqrt(2)*I/2, sqrt(2)*I/2, -sqrt(2)*I*(-S(7)/8 - \
        3*sqrt(2)*I/2)/2], [-3*sqrt(2)*I/4, -3*sqrt(2)*I/4, -sqrt(2)*I/2, -sqrt(2)*I/2, \
        sqrt(2)*I*(-S(7)/8 + 3*sqrt(2)*I/2)/2]]
    )]
    for num, den, mul, d in tests:
        ser = rational_laurent_series(num, den, x, oo, mul, 1)
        assert construct_d_case_4(ser, mul//2) == d


def test_construct_d_case_5():
    """
    This function tests the Case 5 in the step
    to calculate coefficients of the d-vector.

    Each test case has 3 values -

    1. num - Numerator of the rational function a(x).
    2. den - Denominator of the rational function a(x).
    3. d - The d-vector.
    """
    tests = [
    (
        Poly(2*x**3 + x**2 + x - 2, x, extension=True),
        Poly(9*x**3 + 5*x**2 + 2*x - 1, x, extension=True),
        [[sqrt(2)/3, -sqrt(2)/108], [-sqrt(2)/3, sqrt(2)/108]]
    ),
    (
        Poly(3*x**5 + x**4 - x**3 + x**2 - 2*x - 2, x, domain='ZZ'),
        Poly(9*x**5 + 7*x**4 + 3*x**3 + 2*x**2 + 5*x + 7, x, domain='ZZ'),
        [[sqrt(3)/3, -2*sqrt(3)/27], [-sqrt(3)/3, 2*sqrt(3)/27]]
    ),
    (
        Poly(x**2 - x + 1, x, domain='ZZ'),
        Poly(3*x**2 + 7*x + 3, x, domain='ZZ'),
        [[sqrt(3)/3, -5*sqrt(3)/9], [-sqrt(3)/3, 5*sqrt(3)/9]]
    )]
    for num, den, d in tests:
        # Multiplicity of oo is 0
        ser = rational_laurent_series(num, den, x, oo, 0, 1)
        assert construct_d_case_5(ser) == d


def test_construct_d_case_6():
    """
    This function tests the Case 6 in the step
    to calculate coefficients of the d-vector.

    Each test case has 3 values -

    1. num - Numerator of the rational function a(x).
    2. den - Denominator of the rational function a(x).
    3. d - The d-vector.
    """
    tests = [
    (
        Poly(-2*x**2 - 5, x, domain='ZZ'),
        Poly(4*x**4 + 2*x**2 + 10*x + 2, x, domain='ZZ'),
        [[S(1)/2 + I/2], [S(1)/2 - I/2]]
    ),
    (
        Poly(-2*x**3 - 4*x**2 - 2*x - 5, x, domain='ZZ'),
        Poly(x**6 - x**5 + 2*x**4 - 4*x**3 - 5*x**2 - 5*x + 9, x, domain='ZZ'),
        [[1], [0]]
    ),
    (
        Poly(-5*x**3 + x**2 + 11*x + 12, x, domain='ZZ'),
        Poly(6*x**8 - 26*x**7 - 27*x**6 - 10*x**5 - 44*x**4 - 46*x**3 - 34*x**2 \
        - 27*x - 42, x, domain='ZZ'),
        [[1], [0]]
    )]
    for num, den, d in tests:
        assert construct_d_case_6(num, den, x) == d


def test_rational_laurent_series():
    """
    This function tests the computation of coefficients
    of Laurent series of a rational function.

    Each test case has 5 values -

    1. num - Numerator of the rational function.
    2. den - Denominator of the rational function.
    3. x0 - Point about which Laurent series is to
       be calculated.
    4. mul - Multiplicity of x0 if x0 is a pole of
       the rational function (0 otherwise).
    5. n - Number of terms upto which the series
       is to be calculated.
    """
    tests = [
    # Laurent series about simple pole (Multiplicity = 1)
    (
        Poly(x**2 - 3*x + 9, x, extension=True),
        Poly(x**2 - x, x, extension=True),
        S(1), 1, 6,
        {1: 7, 0: -8, -1: 9, -2: -9, -3: 9, -4: -9}
    ),
    # Laurent series about multiple pole (Multiplicity > 1)
    (
        Poly(64*x**3 - 1728*x + 1216, x, extension=True),
        Poly(64*x**4 - 80*x**3 - 831*x**2 + 1809*x - 972, x, extension=True),
        S(9)/8, 2, 3,
        {0: S(32177152)/46521675, 2: S(1019)/984, -1: S(11947565056)/28610830125, \
        1: S(209149)/75645}
    ),
    (
        Poly(1, x, extension=True),
        Poly(x**5 + (-4*sqrt(2) - 1)*x**4 + (4*sqrt(2) + 12)*x**3 + (-12 - 8*sqrt(2))*x**2 \
        + (4 + 8*sqrt(2))*x - 4, x, extension=True),
        sqrt(2), 4, 6,
        {4: 1 + sqrt(2), 3: -3 - 2*sqrt(2), 2: Mul(-1, -3 - 2*sqrt(2), evaluate=False)/(-1 \
        + sqrt(2)), 1: (-3 - 2*sqrt(2))/(-1 + sqrt(2))**2, 0: Mul(-1, -3 - 2*sqrt(2), evaluate=False \
        )/(-1 + sqrt(2))**3, -1: (-3 - 2*sqrt(2))/(-1 + sqrt(2))**4}
    ),
    # Laurent series about oo
    (
        Poly(x**5 - 4*x**3 + 6*x**2 + 10*x - 13, x, extension=True),
        Poly(x**2 - 5, x, extension=True),
        oo, 3, 6,
        {3: 1, 2: 0, 1: 1, 0: 6, -1: 15, -2: 17}
    ),
    # Laurent series at x0 where x0 is not a pole of the function
    # Using multiplicity as 0 (as x0 will not be a pole)
    (
        Poly(3*x**3 + 6*x**2 - 2*x + 5, x, extension=True),
        Poly(9*x**4 - x**3 - 3*x**2 + 4*x + 4, x, extension=True),
        S(2)/5, 0, 1,
        {0: S(3345)/3304, -1: S(399325)/2729104, -2: S(3926413375)/4508479808, \
        -3: S(-5000852751875)/1862002160704, -4: S(-6683640101653125)/6152055138966016}
    ),
    (
        Poly(-7*x**2 + 2*x - 4, x, extension=True),
        Poly(7*x**5 + 9*x**4 + 8*x**3 + 3*x**2 + 6*x + 9, x, extension=True),
        oo, 0, 6,
        {0: 0, -2: 0, -5: -S(71)/49, -1: 0, -3: -1, -4: S(11)/7}
    )]
    for num, den, x0, mul, n, ser in tests:
        assert ser == rational_laurent_series(num, den, x, x0, mul, n)


def check_dummy_sol(eq, solse, dummy_sym):
    """
    Helper function to check if actual solution
    matches expected solution if actual solution
    contains dummy symbols.
    """
    if isinstance(eq, Eq):
        eq = eq.lhs - eq.rhs
    _, funcs = match_riccati(eq, f, x)

    sols = solve_riccati(f(x), x, *funcs)
    C1 = Dummy('C1')
    sols = [sol.subs(C1, dummy_sym) for sol in sols]

    assert all(x[0] for x in checkodesol(eq, sols))
    assert all(s1.dummy_eq(s2, dummy_sym) for s1, s2 in zip(sols, solse))


def test_solve_riccati():
    """
    This function tests the computation of rational
    particular solutions for a Riccati ODE.

    Each test case has 2 values -

    1. eq - Riccati ODE to be solved.
    2. sol - Expected solution to the equation.

    Some examples have been taken from the paper - "Statistical Investigation of
    First-Order Algebraic ODEs and their Rational General Solutions" by
    Georg Grasegger, N. Thieu Vo, Franz Winkler

    https://www3.risc.jku.at/publications/download/risc_5197/RISCReport15-19.pdf
    """
    C0 = Dummy('C0')
    # Type: 1st Order Rational Riccati, dy/dx = a + b*y + c*y**2,
    # a, b, c are rational functions of x

    tests = [
    # a(x) is a constant
    (
        Eq(f(x).diff(x) + f(x)**2 - 2, 0),
        [Eq(f(x), sqrt(2)), Eq(f(x), -sqrt(2))]
    ),
    # a(x) is a constant
    (
        f(x)**2 + f(x).diff(x) + 4*f(x)/x + 2/x**2,
        [Eq(f(x), (-2*C0 - x)/(C0*x + x**2))]
    ),
    # a(x) is a constant
    (
        2*x**2*f(x).diff(x) - x*(4*f(x) + f(x).diff(x) - 4) + (f(x) - 1)*f(x),
        [Eq(f(x), (C0 + 2*x**2)/(C0 + x))]
    ),
    # Pole with multiplicity 1
    (
        Eq(f(x).diff(x), -f(x)**2 - 2/(x**3 - x**2)),
        [Eq(f(x), 1/(x**2 - x))]
    ),
    # One pole of multiplicity 2
    (
        x**2 - (2*x + 1/x)*f(x) + f(x)**2 + f(x).diff(x),
        [Eq(f(x), (C0*x + x**3 + 2*x)/(C0 + x**2)), Eq(f(x), x)]
    ),
    (
        x**4*f(x).diff(x) + x**2 - x*(2*f(x)**2 + f(x).diff(x)) + f(x),
        [Eq(f(x), (C0*x**2 + x)/(C0 + x**2)), Eq(f(x), x**2)]
    ),
    # Multiple poles of multiplicity 2
    (
        -f(x)**2 + f(x).diff(x) + (15*x**2 - 20*x + 7)/((x - 1)**2*(2*x \
            - 1)**2),
        [Eq(f(x), (9*C0*x - 6*C0 - 15*x**5 + 60*x**4 - 94*x**3 + 72*x**2 \
        - 30*x + 6)/(6*C0*x**2 - 9*C0*x + 3*C0 + 6*x**6 - 29*x**5 + \
        57*x**4 - 58*x**3 + 30*x**2 - 6*x)), Eq(f(x), (3*x - 2)/(2*x**2 \
        - 3*x + 1))]
    ),
    # Regression: Poles with even multiplicity > 2 fixed
    (
        f(x)**2 + f(x).diff(x) - (4*x**6 - 8*x**5 + 12*x**4 + 4*x**3 + \
            7*x**2 - 20*x + 4)/(4*x**4),
        [Eq(f(x), (2*x**5 - 2*x**4 - x**3 + 4*x**2 + 3*x - 2)/(2*x**4 \
            - 2*x**2))]
    ),
    # Regression: Poles with even multiplicity > 2 fixed
    (
        Eq(f(x).diff(x), (-x**6 + 15*x**4 - 40*x**3 + 45*x**2 - 24*x + 4)/\
            (x**12 - 12*x**11 + 66*x**10 - 220*x**9 + 495*x**8 - 792*x**7 + 924*x**6 - \
            792*x**5 + 495*x**4 - 220*x**3 + 66*x**2 - 12*x + 1) + f(x)**2 + f(x)),
        [Eq(f(x), 1/(x**6 - 6*x**5 + 15*x**4 - 20*x**3 + 15*x**2 - 6*x + 1))]
    ),
    # More than 2 poles with multiplicity 2
    # Regression: Fixed mistake in necessary conditions
    (
        Eq(f(x).diff(x), x*f(x) + 2*x + (3*x - 2)*f(x)**2/(4*x + 2) + \
            (8*x**2 - 7*x + 26)/(16*x**3 - 24*x**2 + 8) - S(3)/2),
        [Eq(f(x), (1 - 4*x)/(2*x - 2))]
    ),
    # Regression: Fixed mistake in necessary conditions
    (
        Eq(f(x).diff(x), (-12*x**2 - 48*x - 15)/(24*x**3 - 40*x**2 + 8*x + 8) \
            + 3*f(x)**2/(6*x + 2)),
        [Eq(f(x), (2*x + 1)/(2*x - 2))]
    ),
    # Imaginary poles
    (
        f(x).diff(x) + (3*x**2 + 1)*f(x)**2/x + (6*x**2 - x + 3)*f(x)/(x*(x \
            - 1)) + (3*x**2 - 2*x + 2)/(x*(x - 1)**2),
        [Eq(f(x), (-C0 - x**3 + x**2 - 2*x)/(C0*x - C0 + x**4 - x**3 + x**2 \
            - x)), Eq(f(x), -1/(x - 1))],
    ),
    # Imaginary coefficients in equation
    (
        f(x).diff(x) - 2*I*(f(x)**2 + 1)/x,
        [Eq(f(x), (-I*C0 + I*x**4)/(C0 + x**4)), Eq(f(x), -I)]
    ),
    # Regression: linsolve returning empty solution
    # Large value of m (> 10)
    (
        Eq(f(x).diff(x), x*f(x)/(S(3)/2 - 2*x) + (x/2 - S(1)/3)*f(x)**2/\
            (2*x/3 - S(1)/2) - S(5)/4 + (281*x**2 - 1260*x + 756)/(16*x**3 - 12*x**2)),
        [Eq(f(x), (9 - x)/x), Eq(f(x), (40*x**14 + 28*x**13 + 420*x**12 + 2940*x**11 + \
            18480*x**10 + 103950*x**9 + 519750*x**8 + 2286900*x**7 + 8731800*x**6 + 28378350*\
            x**5 + 76403250*x**4 + 163721250*x**3 + 261954000*x**2 + 278326125*x + 147349125)/\
            ((24*x**14 + 140*x**13 + 840*x**12 + 4620*x**11 + 23100*x**10 + 103950*x**9 + \
            415800*x**8 + 1455300*x**7 + 4365900*x**6 + 10914750*x**5 + 21829500*x**4 + 32744250\
            *x**3 + 32744250*x**2 + 16372125*x)))]
    ),
    # Regression: Fixed bug due to a typo in paper
    (
        Eq(f(x).diff(x), 18*x**3 + 18*x**2 + (-x/2 - S(1)/2)*f(x)**2 + 6),
        [Eq(f(x), 6*x)]
    ),
    # Regression: Fixed bug due to a typo in paper
    (
        Eq(f(x).diff(x), -3*x**3/4 + 15*x/2 + (x/3 - S(4)/3)*f(x)**2 \
            + 9 + (1 - x)*f(x)/x + 3/x),
        [Eq(f(x), -3*x/2 - 3)]
    )]
    for eq, sol in tests:
        check_dummy_sol(eq, sol, C0)


@slow
def test_solve_riccati_slow():
    """
    This function tests the computation of rational
    particular solutions for a Riccati ODE.

    Each test case has 2 values -

    1. eq - Riccati ODE to be solved.
    2. sol - Expected solution to the equation.
    """
    C0 = Dummy('C0')
    tests = [
    # Very large values of m (989 and 991)
    (
        Eq(f(x).diff(x), (1 - x)*f(x)/(x - 3) + (2 - 12*x)*f(x)**2/(2*x - 9) + \
            (54924*x**3 - 405264*x**2 + 1084347*x - 1087533)/(8*x**4 - 132*x**3 + 810*x**2 - \
            2187*x + 2187) + 495),
        [Eq(f(x), (18*x + 6)/(2*x - 9))]
    )]
    for eq, sol in tests:
        check_dummy_sol(eq, sol, C0)