File size: 9,501 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""Tests for Dixon's and Macaulay's classes. """

from sympy.matrices.dense import Matrix
from sympy.polys.polytools import factor
from sympy.core import symbols
from sympy.tensor.indexed import IndexedBase

from sympy.polys.multivariate_resultants import (DixonResultant,
                                                 MacaulayResultant)

c, d = symbols("a, b")
x, y = symbols("x, y")

p =  c * x + y
q =  x + d * y

dixon = DixonResultant(polynomials=[p, q], variables=[x, y])
macaulay = MacaulayResultant(polynomials=[p, q], variables=[x, y])

def test_dixon_resultant_init():
    """Test init method of DixonResultant."""
    a = IndexedBase("alpha")

    assert dixon.polynomials == [p, q]
    assert dixon.variables == [x, y]
    assert dixon.n == 2
    assert dixon.m == 2
    assert dixon.dummy_variables == [a[0], a[1]]

def test_get_dixon_polynomial_numerical():
    """Test Dixon's polynomial for a numerical example."""
    a = IndexedBase("alpha")

    p = x + y
    q = x ** 2 + y **3
    h = x ** 2 + y

    dixon = DixonResultant([p, q, h], [x, y])
    polynomial = -x * y ** 2 * a[0] - x * y ** 2 * a[1] - x * y * a[0] \
    * a[1] - x * y * a[1] ** 2 - x * a[0] * a[1] ** 2 + x * a[0] - \
    y ** 2 * a[0] * a[1] + y ** 2 * a[1] - y * a[0] * a[1] ** 2 + y * \
    a[1] ** 2

    assert dixon.get_dixon_polynomial().as_expr().expand() == polynomial

def test_get_max_degrees():
    """Tests max degrees function."""

    p = x + y
    q = x ** 2 + y **3
    h = x ** 2 + y

    dixon = DixonResultant(polynomials=[p, q, h], variables=[x, y])
    dixon_polynomial = dixon.get_dixon_polynomial()

    assert dixon.get_max_degrees(dixon_polynomial) == [1, 2]

def test_get_dixon_matrix():
    """Test Dixon's resultant for a numerical example."""

    x, y = symbols('x, y')

    p = x + y
    q = x ** 2 + y ** 3
    h = x ** 2 + y

    dixon = DixonResultant([p, q, h], [x, y])
    polynomial = dixon.get_dixon_polynomial()

    assert dixon.get_dixon_matrix(polynomial).det() == 0

def test_get_dixon_matrix_example_two():
    """Test Dixon's matrix for example from [Palancz08]_."""
    x, y, z = symbols('x, y, z')

    f = x ** 2 + y ** 2 - 1 + z * 0
    g = x ** 2 + z ** 2 - 1 + y * 0
    h = y ** 2 + z ** 2 - 1

    example_two = DixonResultant([f, g, h], [y, z])
    poly = example_two.get_dixon_polynomial()
    matrix = example_two.get_dixon_matrix(poly)

    expr = 1 - 8 * x ** 2 + 24 * x ** 4 - 32 * x ** 6 + 16 * x ** 8
    assert (matrix.det() - expr).expand() == 0

def test_KSY_precondition():
    """Tests precondition for KSY Resultant."""
    A, B, C = symbols('A, B, C')

    m1 = Matrix([[1, 2, 3],
                 [4, 5, 12],
                 [6, 7, 18]])

    m2 = Matrix([[0, C**2],
                 [-2 * C, -C ** 2]])

    m3 = Matrix([[1, 0],
                 [0, 1]])

    m4 = Matrix([[A**2, 0, 1],
                 [A, 1, 1 / A]])

    m5 = Matrix([[5, 1],
                 [2, B],
                 [0, 1],
                 [0, 0]])

    assert dixon.KSY_precondition(m1) == False
    assert dixon.KSY_precondition(m2) == True
    assert dixon.KSY_precondition(m3) == True
    assert dixon.KSY_precondition(m4) == False
    assert dixon.KSY_precondition(m5) == True

def test_delete_zero_rows_and_columns():
    """Tests method for deleting rows and columns containing only zeros."""
    A, B, C = symbols('A, B, C')

    m1 = Matrix([[0, 0],
                 [0, 0],
                 [1, 2]])

    m2 = Matrix([[0, 1, 2],
                 [0, 3, 4],
                 [0, 5, 6]])

    m3 = Matrix([[0, 0, 0, 0],
                 [0, 1, 2, 0],
                 [0, 3, 4, 0],
                 [0, 0, 0, 0]])

    m4 = Matrix([[1, 0, 2],
                 [0, 0, 0],
                 [3, 0, 4]])

    m5 = Matrix([[0, 0, 0, 1],
                 [0, 0, 0, 2],
                 [0, 0, 0, 3],
                 [0, 0, 0, 4]])

    m6 = Matrix([[0, 0, A],
                 [B, 0, 0],
                 [0, 0, C]])

    assert dixon.delete_zero_rows_and_columns(m1) == Matrix([[1, 2]])

    assert dixon.delete_zero_rows_and_columns(m2) == Matrix([[1, 2],
                                                             [3, 4],
                                                             [5, 6]])

    assert dixon.delete_zero_rows_and_columns(m3) == Matrix([[1, 2],
                                                             [3, 4]])

    assert dixon.delete_zero_rows_and_columns(m4) == Matrix([[1, 2],
                                                             [3, 4]])

    assert dixon.delete_zero_rows_and_columns(m5) == Matrix([[1],
                                                             [2],
                                                             [3],
                                                             [4]])

    assert dixon.delete_zero_rows_and_columns(m6) == Matrix([[0, A],
                                                             [B, 0],
                                                             [0, C]])

def test_product_leading_entries():
    """Tests product of leading entries method."""
    A, B = symbols('A, B')

    m1 = Matrix([[1, 2, 3],
                 [0, 4, 5],
                 [0, 0, 6]])

    m2 = Matrix([[0, 0, 1],
                 [2, 0, 3]])

    m3 = Matrix([[0, 0, 0],
                 [1, 2, 3],
                 [0, 0, 0]])

    m4 = Matrix([[0, 0, A],
                 [1, 2, 3],
                 [B, 0, 0]])

    assert dixon.product_leading_entries(m1) == 24
    assert dixon.product_leading_entries(m2) == 2
    assert dixon.product_leading_entries(m3) == 1
    assert dixon.product_leading_entries(m4) == A * B

def test_get_KSY_Dixon_resultant_example_one():
    """Tests the KSY Dixon resultant for example one"""
    x, y, z = symbols('x, y, z')

    p = x * y * z
    q = x**2 - z**2
    h = x + y + z
    dixon = DixonResultant([p, q, h], [x, y])
    dixon_poly = dixon.get_dixon_polynomial()
    dixon_matrix = dixon.get_dixon_matrix(dixon_poly)
    D = dixon.get_KSY_Dixon_resultant(dixon_matrix)

    assert D == -z**3

def test_get_KSY_Dixon_resultant_example_two():
    """Tests the KSY Dixon resultant for example two"""
    x, y, A = symbols('x, y, A')

    p = x * y + x * A + x - A**2 - A + y**2 + y
    q = x**2 + x * A - x + x * y + y * A - y
    h = x**2 + x * y + 2 * x - x * A - y * A - 2 * A

    dixon = DixonResultant([p, q, h], [x, y])
    dixon_poly = dixon.get_dixon_polynomial()
    dixon_matrix = dixon.get_dixon_matrix(dixon_poly)
    D = factor(dixon.get_KSY_Dixon_resultant(dixon_matrix))

    assert D == -8*A*(A - 1)*(A + 2)*(2*A - 1)**2

def test_macaulay_resultant_init():
    """Test init method of MacaulayResultant."""

    assert macaulay.polynomials == [p, q]
    assert macaulay.variables == [x, y]
    assert macaulay.n == 2
    assert macaulay.degrees == [1, 1]
    assert macaulay.degree_m == 1
    assert macaulay.monomials_size == 2

def test_get_degree_m():
    assert macaulay._get_degree_m() == 1

def test_get_size():
    assert macaulay.get_size() == 2

def test_macaulay_example_one():
    """Tests the Macaulay for example from [Bruce97]_"""

    x, y, z = symbols('x, y, z')
    a_1_1, a_1_2, a_1_3 = symbols('a_1_1, a_1_2, a_1_3')
    a_2_2, a_2_3, a_3_3 = symbols('a_2_2, a_2_3, a_3_3')
    b_1_1, b_1_2, b_1_3 = symbols('b_1_1, b_1_2, b_1_3')
    b_2_2, b_2_3, b_3_3 = symbols('b_2_2, b_2_3, b_3_3')
    c_1, c_2, c_3 = symbols('c_1, c_2, c_3')

    f_1 = a_1_1 * x ** 2 + a_1_2 * x * y + a_1_3 * x * z + \
          a_2_2 * y ** 2 + a_2_3 * y * z + a_3_3 * z ** 2
    f_2 = b_1_1 * x ** 2 + b_1_2 * x * y + b_1_3 * x * z + \
          b_2_2 * y ** 2 + b_2_3 * y * z + b_3_3 * z ** 2
    f_3 = c_1 * x + c_2 * y + c_3 * z

    mac = MacaulayResultant([f_1, f_2, f_3], [x, y, z])

    assert mac.degrees == [2, 2, 1]
    assert mac.degree_m == 3

    assert mac.monomial_set == [x ** 3, x ** 2 * y, x ** 2 * z,
                                x * y ** 2,
                                x * y * z, x * z ** 2, y ** 3,
                                y ** 2 *z, y * z ** 2, z ** 3]
    assert mac.monomials_size == 10
    assert mac.get_row_coefficients() == [[x, y, z], [x, y, z],
                                          [x * y, x * z, y * z, z ** 2]]

    matrix = mac.get_matrix()
    assert matrix.shape == (mac.monomials_size, mac.monomials_size)
    assert mac.get_submatrix(matrix) == Matrix([[a_1_1, a_2_2],
                                                [b_1_1, b_2_2]])

def test_macaulay_example_two():
    """Tests the Macaulay formulation for example from [Stiller96]_."""

    x, y, z = symbols('x, y, z')
    a_0, a_1, a_2 = symbols('a_0, a_1, a_2')
    b_0, b_1, b_2 = symbols('b_0, b_1, b_2')
    c_0, c_1, c_2, c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4')

    f = a_0 * y -  a_1 * x + a_2 * z
    g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2
    h = c_0 * y - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + \
        c_4 * z ** 3

    mac = MacaulayResultant([f, g, h], [x, y, z])

    assert mac.degrees == [1, 2, 3]
    assert mac.degree_m == 4
    assert mac.monomials_size == 15
    assert len(mac.get_row_coefficients()) == mac.n

    matrix = mac.get_matrix()
    assert matrix.shape == (mac.monomials_size, mac.monomials_size)
    assert mac.get_submatrix(matrix) == Matrix([[-a_1, a_0, a_2, 0],
                                                [0, -a_1, 0, 0],
                                                [0, 0, -a_1, 0],
                                                [0, 0, 0, -a_1]])